| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmltpclem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for pmltpc 23219. (Contributed by Mario Carneiro, 1-Jul-2014.) |
| Ref | Expression |
|---|---|
| pmltpclem1.1 |
|
| pmltpclem1.2 |
|
| pmltpclem1.3 |
|
| pmltpclem1.4 |
|
| pmltpclem1.5 |
|
| pmltpclem1.6 |
|
| Ref | Expression |
|---|---|
| pmltpclem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmltpclem1.1 |
. 2
| |
| 2 | pmltpclem1.2 |
. 2
| |
| 3 | pmltpclem1.3 |
. 2
| |
| 4 | pmltpclem1.4 |
. 2
| |
| 5 | pmltpclem1.5 |
. 2
| |
| 6 | pmltpclem1.6 |
. 2
| |
| 7 | breq1 4656 |
. . . 4
| |
| 8 | fveq2 6191 |
. . . . . . 7
| |
| 9 | 8 | breq1d 4663 |
. . . . . 6
|
| 10 | 9 | anbi1d 741 |
. . . . 5
|
| 11 | 8 | breq2d 4665 |
. . . . . 6
|
| 12 | 11 | anbi1d 741 |
. . . . 5
|
| 13 | 10, 12 | orbi12d 746 |
. . . 4
|
| 14 | 7, 13 | 3anbi13d 1401 |
. . 3
|
| 15 | breq2 4657 |
. . . 4
| |
| 16 | breq1 4656 |
. . . 4
| |
| 17 | fveq2 6191 |
. . . . . . 7
| |
| 18 | 17 | breq2d 4665 |
. . . . . 6
|
| 19 | 17 | breq2d 4665 |
. . . . . 6
|
| 20 | 18, 19 | anbi12d 747 |
. . . . 5
|
| 21 | 17 | breq1d 4663 |
. . . . . 6
|
| 22 | 17 | breq1d 4663 |
. . . . . 6
|
| 23 | 21, 22 | anbi12d 747 |
. . . . 5
|
| 24 | 20, 23 | orbi12d 746 |
. . . 4
|
| 25 | 15, 16, 24 | 3anbi123d 1399 |
. . 3
|
| 26 | breq2 4657 |
. . . 4
| |
| 27 | fveq2 6191 |
. . . . . . 7
| |
| 28 | 27 | breq1d 4663 |
. . . . . 6
|
| 29 | 28 | anbi2d 740 |
. . . . 5
|
| 30 | 27 | breq2d 4665 |
. . . . . 6
|
| 31 | 30 | anbi2d 740 |
. . . . 5
|
| 32 | 29, 31 | orbi12d 746 |
. . . 4
|
| 33 | 26, 32 | 3anbi23d 1402 |
. . 3
|
| 34 | 14, 25, 33 | rspc3ev 3326 |
. 2
|
| 35 | 1, 2, 3, 4, 5, 6, 34 | syl33anc 1341 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: pmltpclem2 23218 |
| Copyright terms: Public domain | W3C validator |