| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmltpc | Structured version Visualization version Unicode version | ||
| Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.) |
| Ref | Expression |
|---|---|
| pmltpc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexanali 2998 |
. . . . . . . 8
| |
| 2 | 1 | rexbii 3041 |
. . . . . . 7
|
| 3 | rexnal 2995 |
. . . . . . 7
| |
| 4 | 2, 3 | bitri 264 |
. . . . . 6
|
| 5 | rexanali 2998 |
. . . . . . . 8
| |
| 6 | 5 | rexbii 3041 |
. . . . . . 7
|
| 7 | rexnal 2995 |
. . . . . . . 8
| |
| 8 | breq1 4656 |
. . . . . . . . . 10
| |
| 9 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 10 | 9 | breq2d 4665 |
. . . . . . . . . 10
|
| 11 | 8, 10 | imbi12d 334 |
. . . . . . . . 9
|
| 12 | breq2 4657 |
. . . . . . . . . 10
| |
| 13 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 14 | 13 | breq1d 4663 |
. . . . . . . . . 10
|
| 15 | 12, 14 | imbi12d 334 |
. . . . . . . . 9
|
| 16 | 11, 15 | cbvral2v 3179 |
. . . . . . . 8
|
| 17 | 7, 16 | xchbinx 324 |
. . . . . . 7
|
| 18 | 6, 17 | bitri 264 |
. . . . . 6
|
| 19 | 4, 18 | anbi12i 733 |
. . . . 5
|
| 20 | reeanv 3107 |
. . . . 5
| |
| 21 | ioran 511 |
. . . . 5
| |
| 22 | 19, 20, 21 | 3bitr4i 292 |
. . . 4
|
| 23 | reeanv 3107 |
. . . . . 6
| |
| 24 | simplll 798 |
. . . . . . . . . 10
| |
| 25 | 24 | simpld 475 |
. . . . . . . . 9
|
| 26 | 24 | simprd 479 |
. . . . . . . . 9
|
| 27 | simpllr 799 |
. . . . . . . . . 10
| |
| 28 | 27 | simpld 475 |
. . . . . . . . 9
|
| 29 | simplrl 800 |
. . . . . . . . 9
| |
| 30 | 27 | simprd 479 |
. . . . . . . . 9
|
| 31 | simplrr 801 |
. . . . . . . . 9
| |
| 32 | simprll 802 |
. . . . . . . . 9
| |
| 33 | simprrl 804 |
. . . . . . . . 9
| |
| 34 | simprlr 803 |
. . . . . . . . 9
| |
| 35 | simprrr 805 |
. . . . . . . . 9
| |
| 36 | 25, 26, 28, 29, 30, 31, 32, 33, 34, 35 | pmltpclem2 23218 |
. . . . . . . 8
|
| 37 | 36 | ex 450 |
. . . . . . 7
|
| 38 | 37 | rexlimdvva 3038 |
. . . . . 6
|
| 39 | 23, 38 | syl5bir 233 |
. . . . 5
|
| 40 | 39 | rexlimdvva 3038 |
. . . 4
|
| 41 | 22, 40 | syl5bir 233 |
. . 3
|
| 42 | 41 | orrd 393 |
. 2
|
| 43 | df-3or 1038 |
. 2
| |
| 44 | 42, 43 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |