| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmltpclem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for pmltpc 23219. (Contributed by Mario Carneiro, 1-Jul-2014.) |
| Ref | Expression |
|---|---|
| pmltpc.1 |
|
| pmltpc.2 |
|
| pmltpc.3 |
|
| pmltpc.4 |
|
| pmltpc.5 |
|
| pmltpc.6 |
|
| pmltpc.7 |
|
| pmltpc.8 |
|
| pmltpc.9 |
|
| pmltpc.10 |
|
| Ref | Expression |
|---|---|
| pmltpclem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmltpc.5 |
. . . . 5
| |
| 2 | 1 | ad2antrr 762 |
. . . 4
|
| 3 | pmltpc.3 |
. . . . 5
| |
| 4 | 3 | ad2antrr 762 |
. . . 4
|
| 5 | pmltpc.4 |
. . . . 5
| |
| 6 | 5 | ad2antrr 762 |
. . . 4
|
| 7 | simpr 477 |
. . . 4
| |
| 8 | pmltpc.1 |
. . . . . . . . . . 11
| |
| 9 | reex 10027 |
. . . . . . . . . . . 12
| |
| 10 | 9, 9 | elpm2 7889 |
. . . . . . . . . . 11
|
| 11 | 8, 10 | sylib 208 |
. . . . . . . . . 10
|
| 12 | 11 | simpld 475 |
. . . . . . . . 9
|
| 13 | pmltpc.2 |
. . . . . . . . . 10
| |
| 14 | 13, 5 | sseldd 3604 |
. . . . . . . . 9
|
| 15 | 12, 14 | ffvelrnd 6360 |
. . . . . . . 8
|
| 16 | pmltpc.9 |
. . . . . . . . 9
| |
| 17 | 13, 3 | sseldd 3604 |
. . . . . . . . . . 11
|
| 18 | 12, 17 | ffvelrnd 6360 |
. . . . . . . . . 10
|
| 19 | 15, 18 | ltnled 10184 |
. . . . . . . . 9
|
| 20 | 16, 19 | mpbird 247 |
. . . . . . . 8
|
| 21 | 15, 20 | gtned 10172 |
. . . . . . 7
|
| 22 | fveq2 6191 |
. . . . . . . . 9
| |
| 23 | 22 | eqcomd 2628 |
. . . . . . . 8
|
| 24 | 23 | necon3i 2826 |
. . . . . . 7
|
| 25 | 21, 24 | syl 17 |
. . . . . 6
|
| 26 | 11 | simprd 479 |
. . . . . . . 8
|
| 27 | 26, 17 | sseldd 3604 |
. . . . . . 7
|
| 28 | 26, 14 | sseldd 3604 |
. . . . . . 7
|
| 29 | pmltpc.7 |
. . . . . . 7
| |
| 30 | 27, 28, 29 | leltned 10190 |
. . . . . 6
|
| 31 | 25, 30 | mpbird 247 |
. . . . 5
|
| 32 | 31 | ad2antrr 762 |
. . . 4
|
| 33 | simplr 792 |
. . . . . 6
| |
| 34 | 20 | ad2antrr 762 |
. . . . . 6
|
| 35 | 33, 34 | jca 554 |
. . . . 5
|
| 36 | 35 | orcd 407 |
. . . 4
|
| 37 | 2, 4, 6, 7, 32, 36 | pmltpclem1 23217 |
. . 3
|
| 38 | 3 | ad2antrr 762 |
. . . 4
|
| 39 | 1 | ad2antrr 762 |
. . . 4
|
| 40 | pmltpc.6 |
. . . . 5
| |
| 41 | 40 | ad2antrr 762 |
. . . 4
|
| 42 | 13, 1 | sseldd 3604 |
. . . . . . . . 9
|
| 43 | 12, 42 | ffvelrnd 6360 |
. . . . . . . 8
|
| 44 | 43 | ad2antrr 762 |
. . . . . . 7
|
| 45 | simplr 792 |
. . . . . . 7
| |
| 46 | 44, 45 | gtned 10172 |
. . . . . 6
|
| 47 | fveq2 6191 |
. . . . . . . 8
| |
| 48 | 47 | eqcomd 2628 |
. . . . . . 7
|
| 49 | 48 | necon3i 2826 |
. . . . . 6
|
| 50 | 46, 49 | syl 17 |
. . . . 5
|
| 51 | 27 | ad2antrr 762 |
. . . . . 6
|
| 52 | 26, 42 | sseldd 3604 |
. . . . . . 7
|
| 53 | 52 | ad2antrr 762 |
. . . . . 6
|
| 54 | simpr 477 |
. . . . . 6
| |
| 55 | 51, 53, 54 | leltned 10190 |
. . . . 5
|
| 56 | 50, 55 | mpbird 247 |
. . . 4
|
| 57 | pmltpc.10 |
. . . . . . . . 9
| |
| 58 | 13, 40 | sseldd 3604 |
. . . . . . . . . . 11
|
| 59 | 12, 58 | ffvelrnd 6360 |
. . . . . . . . . 10
|
| 60 | 43, 59 | ltnled 10184 |
. . . . . . . . 9
|
| 61 | 57, 60 | mpbird 247 |
. . . . . . . 8
|
| 62 | 43, 61 | gtned 10172 |
. . . . . . 7
|
| 63 | fveq2 6191 |
. . . . . . . 8
| |
| 64 | 63 | necon3i 2826 |
. . . . . . 7
|
| 65 | 62, 64 | syl 17 |
. . . . . 6
|
| 66 | 26, 58 | sseldd 3604 |
. . . . . . 7
|
| 67 | pmltpc.8 |
. . . . . . 7
| |
| 68 | 52, 66, 67 | leltned 10190 |
. . . . . 6
|
| 69 | 65, 68 | mpbird 247 |
. . . . 5
|
| 70 | 69 | ad2antrr 762 |
. . . 4
|
| 71 | 61 | ad2antrr 762 |
. . . . . 6
|
| 72 | 45, 71 | jca 554 |
. . . . 5
|
| 73 | 72 | olcd 408 |
. . . 4
|
| 74 | 38, 39, 41, 56, 70, 73 | pmltpclem1 23217 |
. . 3
|
| 75 | 52 | adantr 481 |
. . 3
|
| 76 | 27 | adantr 481 |
. . 3
|
| 77 | 37, 74, 75, 76 | ltlecasei 10145 |
. 2
|
| 78 | 3 | ad2antrr 762 |
. . . 4
|
| 79 | 5 | ad2antrr 762 |
. . . 4
|
| 80 | 40 | ad2antrr 762 |
. . . 4
|
| 81 | 31 | ad2antrr 762 |
. . . 4
|
| 82 | simpr 477 |
. . . 4
| |
| 83 | 20 | ad2antrr 762 |
. . . . . 6
|
| 84 | 15 | adantr 481 |
. . . . . . . 8
|
| 85 | 18 | adantr 481 |
. . . . . . . 8
|
| 86 | 59 | adantr 481 |
. . . . . . . 8
|
| 87 | 20 | adantr 481 |
. . . . . . . 8
|
| 88 | 43 | adantr 481 |
. . . . . . . . 9
|
| 89 | simpr 477 |
. . . . . . . . 9
| |
| 90 | 61 | adantr 481 |
. . . . . . . . 9
|
| 91 | 85, 88, 86, 89, 90 | lelttrd 10195 |
. . . . . . . 8
|
| 92 | 84, 85, 86, 87, 91 | lttrd 10198 |
. . . . . . 7
|
| 93 | 92 | adantr 481 |
. . . . . 6
|
| 94 | 83, 93 | jca 554 |
. . . . 5
|
| 95 | 94 | olcd 408 |
. . . 4
|
| 96 | 78, 79, 80, 81, 82, 95 | pmltpclem1 23217 |
. . 3
|
| 97 | 1 | ad2antrr 762 |
. . . 4
|
| 98 | 40 | ad2antrr 762 |
. . . 4
|
| 99 | 5 | ad2antrr 762 |
. . . 4
|
| 100 | 69 | ad2antrr 762 |
. . . 4
|
| 101 | 15 | ad2antrr 762 |
. . . . . . 7
|
| 102 | 92 | adantr 481 |
. . . . . . 7
|
| 103 | 101, 102 | gtned 10172 |
. . . . . 6
|
| 104 | fveq2 6191 |
. . . . . . . 8
| |
| 105 | 104 | eqcomd 2628 |
. . . . . . 7
|
| 106 | 105 | necon3i 2826 |
. . . . . 6
|
| 107 | 103, 106 | syl 17 |
. . . . 5
|
| 108 | 66 | ad2antrr 762 |
. . . . . 6
|
| 109 | 28 | ad2antrr 762 |
. . . . . 6
|
| 110 | simpr 477 |
. . . . . 6
| |
| 111 | 108, 109, 110 | leltned 10190 |
. . . . 5
|
| 112 | 107, 111 | mpbird 247 |
. . . 4
|
| 113 | 61 | ad2antrr 762 |
. . . . . 6
|
| 114 | 113, 102 | jca 554 |
. . . . 5
|
| 115 | 114 | orcd 407 |
. . . 4
|
| 116 | 97, 98, 99, 100, 112, 115 | pmltpclem1 23217 |
. . 3
|
| 117 | 28 | adantr 481 |
. . 3
|
| 118 | 66 | adantr 481 |
. . 3
|
| 119 | 96, 116, 117, 118 | ltlecasei 10145 |
. 2
|
| 120 | 77, 119, 43, 18 | ltlecasei 10145 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 |
| This theorem is referenced by: pmltpc 23219 |
| Copyright terms: Public domain | W3C validator |