| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pofun | Structured version Visualization version Unicode version | ||
| Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.) |
| Ref | Expression |
|---|---|
| pofun.1 |
|
| pofun.2 |
|
| Ref | Expression |
|---|---|
| pofun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v 3549 |
. . . . . . 7
| |
| 2 | 1 | nfel1 2779 |
. . . . . 6
|
| 3 | csbeq1a 3542 |
. . . . . . 7
| |
| 4 | 3 | eleq1d 2686 |
. . . . . 6
|
| 5 | 2, 4 | rspc 3303 |
. . . . 5
|
| 6 | 5 | impcom 446 |
. . . 4
|
| 7 | poirr 5046 |
. . . . 5
| |
| 8 | df-br 4654 |
. . . . . 6
| |
| 9 | pofun.1 |
. . . . . . 7
| |
| 10 | 9 | eleq2i 2693 |
. . . . . 6
|
| 11 | nfcv 2764 |
. . . . . . . 8
| |
| 12 | nfcv 2764 |
. . . . . . . 8
| |
| 13 | 1, 11, 12 | nfbr 4699 |
. . . . . . 7
|
| 14 | nfv 1843 |
. . . . . . 7
| |
| 15 | vex 3203 |
. . . . . . 7
| |
| 16 | 3 | breq1d 4663 |
. . . . . . 7
|
| 17 | vex 3203 |
. . . . . . . . . 10
| |
| 18 | pofun.2 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | csbie 3559 |
. . . . . . . . 9
|
| 20 | csbeq1 3536 |
. . . . . . . . 9
| |
| 21 | 19, 20 | syl5eqr 2670 |
. . . . . . . 8
|
| 22 | 21 | breq2d 4665 |
. . . . . . 7
|
| 23 | 13, 14, 15, 15, 16, 22 | opelopabf 5000 |
. . . . . 6
|
| 24 | 8, 10, 23 | 3bitri 286 |
. . . . 5
|
| 25 | 7, 24 | sylnibr 319 |
. . . 4
|
| 26 | 6, 25 | sylan2 491 |
. . 3
|
| 27 | 26 | anassrs 680 |
. 2
|
| 28 | 5 | com12 32 |
. . . . . 6
|
| 29 | nfcsb1v 3549 |
. . . . . . . . 9
| |
| 30 | 29 | nfel1 2779 |
. . . . . . . 8
|
| 31 | csbeq1a 3542 |
. . . . . . . . 9
| |
| 32 | 31 | eleq1d 2686 |
. . . . . . . 8
|
| 33 | 30, 32 | rspc 3303 |
. . . . . . 7
|
| 34 | 33 | com12 32 |
. . . . . 6
|
| 35 | nfcsb1v 3549 |
. . . . . . . . 9
| |
| 36 | 35 | nfel1 2779 |
. . . . . . . 8
|
| 37 | csbeq1a 3542 |
. . . . . . . . 9
| |
| 38 | 37 | eleq1d 2686 |
. . . . . . . 8
|
| 39 | 36, 38 | rspc 3303 |
. . . . . . 7
|
| 40 | 39 | com12 32 |
. . . . . 6
|
| 41 | 28, 34, 40 | 3anim123d 1406 |
. . . . 5
|
| 42 | 41 | imp 445 |
. . . 4
|
| 43 | 42 | adantll 750 |
. . 3
|
| 44 | potr 5047 |
. . . . 5
| |
| 45 | df-br 4654 |
. . . . . . 7
| |
| 46 | 9 | eleq2i 2693 |
. . . . . . 7
|
| 47 | nfv 1843 |
. . . . . . . 8
| |
| 48 | vex 3203 |
. . . . . . . 8
| |
| 49 | csbeq1 3536 |
. . . . . . . . . 10
| |
| 50 | 19, 49 | syl5eqr 2670 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 4665 |
. . . . . . . 8
|
| 52 | 13, 47, 15, 48, 16, 51 | opelopabf 5000 |
. . . . . . 7
|
| 53 | 45, 46, 52 | 3bitri 286 |
. . . . . 6
|
| 54 | df-br 4654 |
. . . . . . 7
| |
| 55 | 9 | eleq2i 2693 |
. . . . . . 7
|
| 56 | 29, 11, 12 | nfbr 4699 |
. . . . . . . 8
|
| 57 | nfv 1843 |
. . . . . . . 8
| |
| 58 | vex 3203 |
. . . . . . . 8
| |
| 59 | 31 | breq1d 4663 |
. . . . . . . 8
|
| 60 | csbeq1 3536 |
. . . . . . . . . 10
| |
| 61 | 19, 60 | syl5eqr 2670 |
. . . . . . . . 9
|
| 62 | 61 | breq2d 4665 |
. . . . . . . 8
|
| 63 | 56, 57, 48, 58, 59, 62 | opelopabf 5000 |
. . . . . . 7
|
| 64 | 54, 55, 63 | 3bitri 286 |
. . . . . 6
|
| 65 | 53, 64 | anbi12i 733 |
. . . . 5
|
| 66 | df-br 4654 |
. . . . . 6
| |
| 67 | 9 | eleq2i 2693 |
. . . . . 6
|
| 68 | nfv 1843 |
. . . . . . 7
| |
| 69 | 61 | breq2d 4665 |
. . . . . . 7
|
| 70 | 13, 68, 15, 58, 16, 69 | opelopabf 5000 |
. . . . . 6
|
| 71 | 66, 67, 70 | 3bitri 286 |
. . . . 5
|
| 72 | 44, 65, 71 | 3imtr4g 285 |
. . . 4
|
| 73 | 72 | adantlr 751 |
. . 3
|
| 74 | 43, 73 | syldan 487 |
. 2
|
| 75 | 27, 74 | ispod 5043 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |