Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointsetN Structured version   Visualization version   Unicode version

Theorem pointsetN 35027
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointset.a  |-  A  =  ( Atoms `  K )
pointset.p  |-  P  =  ( Points `  K )
Assertion
Ref Expression
pointsetN  |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
Distinct variable groups:    p, a, A    K, p
Allowed substitution hints:    B( p, a)    P( p, a)    K( a)

Proof of Theorem pointsetN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 pointset.p . . 3  |-  P  =  ( Points `  K )
3 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 pointset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65rexeqdv 3145 . . . . 5  |-  ( k  =  K  ->  ( E. a  e.  ( Atoms `  k ) p  =  { a }  <->  E. a  e.  A  p  =  { a } ) )
76abbidv 2741 . . . 4  |-  ( k  =  K  ->  { p  |  E. a  e.  (
Atoms `  k ) p  =  { a } }  =  { p  |  E. a  e.  A  p  =  { a } } )
8 df-pointsN 34788 . . . 4  |-  Points  =  ( k  e.  _V  |->  { p  |  E. a  e.  ( Atoms `  k )
p  =  { a } } )
9 fvex 6201 . . . . . 6  |-  ( Atoms `  K )  e.  _V
104, 9eqeltri 2697 . . . . 5  |-  A  e. 
_V
1110abrexex 7141 . . . 4  |-  { p  |  E. a  e.  A  p  =  { a } }  e.  _V
127, 8, 11fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  ( Points `
 K )  =  { p  |  E. a  e.  A  p  =  { a } }
)
132, 12syl5eq 2668 . 2  |-  ( K  e.  _V  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
141, 13syl 17 1  |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200   {csn 4177   ` cfv 5888   Atomscatm 34550   PointscpointsN 34781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-pointsN 34788
This theorem is referenced by:  ispointN  35028
  Copyright terms: Public domain W3C validator