MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predbrg Structured version   Visualization version   Unicode version

Theorem predbrg 5700
Description: Closed form of elpredim 5692. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.)
Assertion
Ref Expression
predbrg  |-  ( ( X  e.  V  /\  Y  e.  Pred ( R ,  A ,  X
) )  ->  Y R X )

Proof of Theorem predbrg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 predeq3 5684 . . . . 5  |-  ( x  =  X  ->  Pred ( R ,  A ,  x )  =  Pred ( R ,  A ,  X ) )
21eleq2d 2687 . . . 4  |-  ( x  =  X  ->  ( Y  e.  Pred ( R ,  A ,  x
)  <->  Y  e.  Pred ( R ,  A ,  X ) ) )
3 breq2 4657 . . . 4  |-  ( x  =  X  ->  ( Y R x  <->  Y R X ) )
42, 3imbi12d 334 . . 3  |-  ( x  =  X  ->  (
( Y  e.  Pred ( R ,  A ,  x )  ->  Y R x )  <->  ( Y  e.  Pred ( R ,  A ,  X )  ->  Y R X ) ) )
5 vex 3203 . . . 4  |-  x  e. 
_V
65elpredim 5692 . . 3  |-  ( Y  e.  Pred ( R ,  A ,  x )  ->  Y R x )
74, 6vtoclg 3266 . 2  |-  ( X  e.  V  ->  ( Y  e.  Pred ( R ,  A ,  X
)  ->  Y R X ) )
87imp 445 1  |-  ( ( X  e.  V  /\  Y  e.  Pred ( R ,  A ,  X
) )  ->  Y R X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator