| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pridl | Structured version Visualization version Unicode version | ||
| Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| pridl.1 |
|
| Ref | Expression |
|---|---|
| pridl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . . 7
| |
| 2 | pridl.1 |
. . . . . . 7
| |
| 3 | eqid 2622 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | ispridl 33833 |
. . . . . 6
|
| 5 | df-3an 1039 |
. . . . . 6
| |
| 6 | 4, 5 | syl6bb 276 |
. . . . 5
|
| 7 | 6 | simplbda 654 |
. . . 4
|
| 8 | raleq 3138 |
. . . . . 6
| |
| 9 | sseq1 3626 |
. . . . . . 7
| |
| 10 | 9 | orbi1d 739 |
. . . . . 6
|
| 11 | 8, 10 | imbi12d 334 |
. . . . 5
|
| 12 | raleq 3138 |
. . . . . . 7
| |
| 13 | 12 | ralbidv 2986 |
. . . . . 6
|
| 14 | sseq1 3626 |
. . . . . . 7
| |
| 15 | 14 | orbi2d 738 |
. . . . . 6
|
| 16 | 13, 15 | imbi12d 334 |
. . . . 5
|
| 17 | 11, 16 | rspc2v 3322 |
. . . 4
|
| 18 | 7, 17 | syl5com 31 |
. . 3
|
| 19 | 18 | expd 452 |
. 2
|
| 20 | 19 | 3imp2 1282 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-pridl 33810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |