Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlidl Structured version   Visualization version   Unicode version

Theorem pridlidl 33834
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Assertion
Ref Expression
pridlidl  |-  ( ( R  e.  RingOps  /\  P  e.  ( PrIdl `  R )
)  ->  P  e.  ( Idl `  R ) )

Proof of Theorem pridlidl
Dummy variables  x  y  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2 eqid 2622 . . . 4  |-  ( 2nd `  R )  =  ( 2nd `  R )
3 eqid 2622 . . . 4  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
41, 2, 3ispridl 33833 . . 3  |-  ( R  e.  RingOps  ->  ( P  e.  ( PrIdl `  R )  <->  ( P  e.  ( Idl `  R )  /\  P  =/=  ran  ( 1st `  R
)  /\  A. a  e.  ( Idl `  R
) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  R
) y )  e.  P  ->  ( a  C_  P  \/  b  C_  P ) ) ) ) )
5 3anass 1042 . . 3  |-  ( ( P  e.  ( Idl `  R )  /\  P  =/=  ran  ( 1st `  R
)  /\  A. a  e.  ( Idl `  R
) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  R
) y )  e.  P  ->  ( a  C_  P  \/  b  C_  P ) ) )  <-> 
( P  e.  ( Idl `  R )  /\  ( P  =/= 
ran  ( 1st `  R
)  /\  A. a  e.  ( Idl `  R
) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  R
) y )  e.  P  ->  ( a  C_  P  \/  b  C_  P ) ) ) ) )
64, 5syl6bb 276 . 2  |-  ( R  e.  RingOps  ->  ( P  e.  ( PrIdl `  R )  <->  ( P  e.  ( Idl `  R )  /\  ( P  =/=  ran  ( 1st `  R )  /\  A. a  e.  ( Idl `  R ) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  R
) y )  e.  P  ->  ( a  C_  P  \/  b  C_  P ) ) ) ) ) )
76simprbda 653 1  |-  ( ( R  e.  RingOps  /\  P  e.  ( PrIdl `  R )
)  ->  P  e.  ( Idl `  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RingOpscrngo 33693   Idlcidl 33806   PrIdlcpridl 33807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-pridl 33810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator