Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlval Structured version   Visualization version   Unicode version

Theorem pridlval 33832
Description: The class of prime ideals of a ring  R. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
pridlval.1  |-  G  =  ( 1st `  R
)
pridlval.2  |-  H  =  ( 2nd `  R
)
pridlval.3  |-  X  =  ran  G
Assertion
Ref Expression
pridlval  |-  ( R  e.  RingOps  ->  ( PrIdl `  R
)  =  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. a  e.  ( Idl `  R ) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x H y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) } )
Distinct variable groups:    R, i, x, y, a, b    i, X    i, H
Allowed substitution hints:    G( x, y, i, a, b)    H( x, y, a, b)    X( x, y, a, b)

Proof of Theorem pridlval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . 3  |-  ( r  =  R  ->  ( Idl `  r )  =  ( Idl `  R
) )
2 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  ( 1st `  r )  =  ( 1st `  R
) )
3 pridlval.1 . . . . . . . 8  |-  G  =  ( 1st `  R
)
42, 3syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  ( 1st `  r )  =  G )
54rneqd 5353 . . . . . 6  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  ran  G )
6 pridlval.3 . . . . . 6  |-  X  =  ran  G
75, 6syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  X )
87neeq2d 2854 . . . 4  |-  ( r  =  R  ->  (
i  =/=  ran  ( 1st `  r )  <->  i  =/=  X ) )
9 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 2nd `  r )  =  ( 2nd `  R
) )
10 pridlval.2 . . . . . . . . . . 11  |-  H  =  ( 2nd `  R
)
119, 10syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 2nd `  r )  =  H )
1211oveqd 6667 . . . . . . . . 9  |-  ( r  =  R  ->  (
x ( 2nd `  r
) y )  =  ( x H y ) )
1312eleq1d 2686 . . . . . . . 8  |-  ( r  =  R  ->  (
( x ( 2nd `  r ) y )  e.  i  <->  ( x H y )  e.  i ) )
14132ralbidv 2989 . . . . . . 7  |-  ( r  =  R  ->  ( A. x  e.  a  A. y  e.  b 
( x ( 2nd `  r ) y )  e.  i  <->  A. x  e.  a  A. y  e.  b  ( x H y )  e.  i ) )
1514imbi1d 331 . . . . . 6  |-  ( r  =  R  ->  (
( A. x  e.  a  A. y  e.  b  ( x ( 2nd `  r ) y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) )  <->  ( A. x  e.  a  A. y  e.  b  (
x H y )  e.  i  ->  (
a  C_  i  \/  b  C_  i ) ) ) )
161, 15raleqbidv 3152 . . . . 5  |-  ( r  =  R  ->  ( A. b  e.  ( Idl `  r ) ( A. x  e.  a 
A. y  e.  b  ( x ( 2nd `  r ) y )  e.  i  ->  (
a  C_  i  \/  b  C_  i ) )  <->  A. b  e.  ( Idl `  R ) ( A. x  e.  a 
A. y  e.  b  ( x H y )  e.  i  -> 
( a  C_  i  \/  b  C_  i ) ) ) )
171, 16raleqbidv 3152 . . . 4  |-  ( r  =  R  ->  ( A. a  e.  ( Idl `  r ) A. b  e.  ( Idl `  r ) ( A. x  e.  a  A. y  e.  b  (
x ( 2nd `  r
) y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) )  <->  A. a  e.  ( Idl `  R
) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x H y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) )
188, 17anbi12d 747 . . 3  |-  ( r  =  R  ->  (
( i  =/=  ran  ( 1st `  r )  /\  A. a  e.  ( Idl `  r
) A. b  e.  ( Idl `  r
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  r
) y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) )  <-> 
( i  =/=  X  /\  A. a  e.  ( Idl `  R ) A. b  e.  ( Idl `  R ) ( A. x  e.  a  A. y  e.  b  ( x H y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) ) )
191, 18rabeqbidv 3195 . 2  |-  ( r  =  R  ->  { i  e.  ( Idl `  r
)  |  ( i  =/=  ran  ( 1st `  r )  /\  A. a  e.  ( Idl `  r ) A. b  e.  ( Idl `  r
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  r
) y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) }  =  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. a  e.  ( Idl `  R ) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x H y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) } )
20 df-pridl 33810 . 2  |-  PrIdl  =  ( r  e.  RingOps  |->  { i  e.  ( Idl `  r
)  |  ( i  =/=  ran  ( 1st `  r )  /\  A. a  e.  ( Idl `  r ) A. b  e.  ( Idl `  r
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  r
) y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) } )
21 fvex 6201 . . 3  |-  ( Idl `  R )  e.  _V
2221rabex 4813 . 2  |-  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. a  e.  ( Idl `  R ) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x H y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) }  e.  _V
2319, 20, 22fvmpt 6282 1  |-  ( R  e.  RingOps  ->  ( PrIdl `  R
)  =  { i  e.  ( Idl `  R
)  |  ( i  =/=  X  /\  A. a  e.  ( Idl `  R ) A. b  e.  ( Idl `  R
) ( A. x  e.  a  A. y  e.  b  ( x H y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    C_ wss 3574   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RingOpscrngo 33693   Idlcidl 33806   PrIdlcpridl 33807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-pridl 33810
This theorem is referenced by:  ispridl  33833
  Copyright terms: Public domain W3C validator