MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1f Structured version   Visualization version   Unicode version

Theorem prodeq1f 14638
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
prodeq1f.1  |-  F/_ k A
prodeq1f.2  |-  F/_ k B
Assertion
Ref Expression
prodeq1f  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )

Proof of Theorem prodeq1f
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3626 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 prodeq1f.1 . . . . . . . . . . . . 13  |-  F/_ k A
3 prodeq1f.2 . . . . . . . . . . . . 13  |-  F/_ k B
42, 3nfeq 2776 . . . . . . . . . . . 12  |-  F/ k  A  =  B
5 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( A  =  B  ->  (
k  e.  A  <->  k  e.  B ) )
65ifbid 4108 . . . . . . . . . . . . 13  |-  ( A  =  B  ->  if ( k  e.  A ,  C ,  1 )  =  if ( k  e.  B ,  C ,  1 ) )
76adantr 481 . . . . . . . . . . . 12  |-  ( ( A  =  B  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  C , 
1 )  =  if ( k  e.  B ,  C ,  1 ) )
84, 7mpteq2da 4743 . . . . . . . . . . 11  |-  ( A  =  B  ->  (
k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )
98seqeq3d 12809 . . . . . . . . . 10  |-  ( A  =  B  ->  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) ) )
109breq1d 4663 . . . . . . . . 9  |-  ( A  =  B  ->  (  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) )
1110anbi2d 740 . . . . . . . 8  |-  ( A  =  B  ->  (
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  <->  ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) ) )
1211exbidv 1850 . . . . . . 7  |-  ( A  =  B  ->  ( E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  <->  E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) ) )
1312rexbidv 3052 . . . . . 6  |-  ( A  =  B  ->  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) ) )
148seqeq3d 12809 . . . . . . 7  |-  ( A  =  B  ->  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) ) )
1514breq1d 4663 . . . . . 6  |-  ( A  =  B  ->  (  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x ) )
161, 13, 153anbi123d 1399 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  <-> 
( B  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x ) ) )
1716rexbidv 3052 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x ) ) )
18 f1oeq3 6129 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1918anbi1d 741 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
2019exbidv 1850 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
2120rexbidv 3052 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
2217, 21orbi12d 746 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
2322iotabidv 5872 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
24 df-prod 14636 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
25 df-prod 14636 . 2  |-  prod_ k  e.  B  C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
2623, 24, 253eqtr4g 2681 1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   E.wrex 2913   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   iotacio 5849   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-prod 14636
This theorem is referenced by:  prodeq1  14639
  Copyright terms: Public domain W3C validator