| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prodeq1f | Structured version Visualization version Unicode version | ||
| Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1f.1 |
|
| prodeq1f.2 |
|
| Ref | Expression |
|---|---|
| prodeq1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3626 |
. . . . . 6
| |
| 2 | prodeq1f.1 |
. . . . . . . . . . . . 13
| |
| 3 | prodeq1f.2 |
. . . . . . . . . . . . 13
| |
| 4 | 2, 3 | nfeq 2776 |
. . . . . . . . . . . 12
|
| 5 | eleq2 2690 |
. . . . . . . . . . . . . 14
| |
| 6 | 5 | ifbid 4108 |
. . . . . . . . . . . . 13
|
| 7 | 6 | adantr 481 |
. . . . . . . . . . . 12
|
| 8 | 4, 7 | mpteq2da 4743 |
. . . . . . . . . . 11
|
| 9 | 8 | seqeq3d 12809 |
. . . . . . . . . 10
|
| 10 | 9 | breq1d 4663 |
. . . . . . . . 9
|
| 11 | 10 | anbi2d 740 |
. . . . . . . 8
|
| 12 | 11 | exbidv 1850 |
. . . . . . 7
|
| 13 | 12 | rexbidv 3052 |
. . . . . 6
|
| 14 | 8 | seqeq3d 12809 |
. . . . . . 7
|
| 15 | 14 | breq1d 4663 |
. . . . . 6
|
| 16 | 1, 13, 15 | 3anbi123d 1399 |
. . . . 5
|
| 17 | 16 | rexbidv 3052 |
. . . 4
|
| 18 | f1oeq3 6129 |
. . . . . . 7
| |
| 19 | 18 | anbi1d 741 |
. . . . . 6
|
| 20 | 19 | exbidv 1850 |
. . . . 5
|
| 21 | 20 | rexbidv 3052 |
. . . 4
|
| 22 | 17, 21 | orbi12d 746 |
. . 3
|
| 23 | 22 | iotabidv 5872 |
. 2
|
| 24 | df-prod 14636 |
. 2
| |
| 25 | df-prod 14636 |
. 2
| |
| 26 | 23, 24, 25 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-prod 14636 |
| This theorem is referenced by: prodeq1 14639 |
| Copyright terms: Public domain | W3C validator |