HomeHome Metamath Proof Explorer
Theorem List (p. 147 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 14601-14700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgeolim 14601* The partial sums in the infinite series  1  +  A ^
1  +  A ^
2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( A ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeolim2 14602* The partial sums in the geometric series  A ^ M  +  A ^ ( M  + 
1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  =  ( A ^
 k ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
 
Theoremgeoreclim 14603* The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  1  <  ( abs `  A ) )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( ( 1  /  A ) ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( A  /  ( A  -  1 ) ) )
 
Theoremgeo2sum 14604* The value of the finite geometric series  2 ^ -u 1  +  2 ^ -u 2  +...  +  2 ^
-u N, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  sum_ k  e.  (
 1 ... N ) ( A  /  ( 2 ^ k ) )  =  ( A  -  ( A  /  (
 2 ^ N ) ) ) )
 
Theoremgeo2sum2 14605* The value of the finite geometric series  1  +  2  + 
4  +  8  +...  +  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 7-Sep-2016.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k )  =  ( ( 2 ^ N )  -  1
 ) )
 
Theoremgeo2lim 14606* The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
 |-  F  =  ( k  e.  NN  |->  ( A 
 /  ( 2 ^
 k ) ) )   =>    |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
 
Theoremgeomulcvg 14607* The geometric series converges even if it is multiplied by  k to result in the larger series  k  x.  A ^
k. (Contributed by Mario Carneiro, 27-Mar-2015.)
 |-  F  =  ( k  e.  NN0  |->  ( k  x.  ( A ^
 k ) ) )   =>    |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremgeoisum 14608* The infinite sum of  1  +  A ^ 1  +  A ^ 2... is  ( 1  /  ( 1  -  A ) ). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeoisumr 14609* The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  1  <  ( abs `  A ) ) 
 ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^ k
 )  =  ( A 
 /  ( A  -  1 ) ) )
 
Theoremgeoisum1 14610* The infinite sum of  A ^ 1  +  A ^ 2... is  ( A  /  ( 1  -  A ) ). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
 1  -  A ) ) )
 
Theoremgeoisum1c 14611* The infinite sum of  A  x.  ( R ^ 1 )  +  A  x.  ( R ^ 2 )... is  ( A  x.  R )  /  (
1  -  R ). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^
 k ) )  =  ( ( A  x.  R )  /  (
 1  -  R ) ) )
 
Theorem0.999... 14612 The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
 |- 
 sum_ k  e.  NN  ( 9  /  (; 1 0 ^ k ) )  =  1
 
Theorem0.999...OLD 14613 Obsolete version of 0.999... 14612 as of 8-Sep-2021. (Contributed by NM, 2-Nov-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
 |- 
 sum_ k  e.  NN  ( 9  /  ( 10 ^ k ) )  =  1
 
Theoremgeoihalfsum 14614 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 14610. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 14612 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
 |- 
 sum_ k  e.  NN  ( 1  /  (
 2 ^ k ) )  =  1
 
5.10.10  Ratio test for infinite series convergence
 
Theoremcvgrat 14615* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms beyond some index  B, then the infinite sum of the terms of 
F converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  W ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
5.10.11  Mertens' theorem
 
Theoremmertenslem1 14616* Lemma for mertens 14618. (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   &    |-  ( ph  ->  ( ps  /\  ( t  e.  NN0  /\ 
 A. m  e.  ( ZZ>=
 `  t ) ( K `  m )  <  ( ( ( E  /  2 ) 
 /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )   &    |-  ( ph  ->  ( 0  <_  sup ( T ,  RR ,  <  ) 
 /\  ( T  C_  RR  /\  T  =/=  (/)  /\  E. z  e.  RR  A. w  e.  T  w  <_  z
 ) ) )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
 ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertenslem2 14617* Lemma for mertens 14618. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertens 14618* Mertens' theorem. If  A ( j ) is an absolutely convergent series and  B ( k ) is convergent, then  ( sum_ j  e.  NN0 A ( j )  x.  sum_ k  e.  NN0 B ( k ) )  =  sum_ k  e. 
NN0 sum_ j  e.  ( 0 ... k ) ( A ( j )  x.  B ( k  -  j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B )
 )
 
5.10.12  Finite and infinite products
 
5.10.12.1  Product sequences
 
Theoremprodf 14619* An infinite product of complex terms is a function from an upper set of integers to  CC. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
 
Theoremclim2prod 14620* The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq ( N  +  1 ) (  x.  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A ) )
 
Theoremclim2div 14621* The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  A )   &    |-  ( ph  ->  (  seq M (  x.  ,  F ) `
  N )  =/=  0 )   =>    |-  ( ph  ->  seq ( N  +  1 )
 (  x.  ,  F ) 
 ~~>  ( A  /  (  seq M (  x.  ,  F ) `  N ) ) )
 
Theoremprodfmul 14622* The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq M (  x.  ,  G ) `
  N ) ) )
 
Theoremprodf1 14623 The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (  seq M (  x.  ,  ( Z  X.  { 1 } ) ) `  N )  =  1 )
 
Theoremprodf1f 14624 A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  x. 
 ,  ( Z  X.  { 1 } ) )  =  ( Z  X.  { 1 } ) )
 
Theoremprodfclim1 14625 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  x. 
 ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremprodfn0 14626* No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =/=  0 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `
  N )  =/=  0 )
 
Theoremprodfrec 14627* The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =/=  0 )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( G `
  k )  =  ( 1  /  ( F `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq M (  x.  ,  F ) `
  N ) ) )
 
Theoremprodfdiv 14628* The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( G `
  k )  =/=  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( H `  k
 )  =  ( ( F `  k ) 
 /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `
  N )  /  (  seq M (  x. 
 ,  G ) `  N ) ) )
 
5.10.12.2  Non-trivial convergence
 
Theoremntrivcvg 14629* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
 
Theoremntrivcvgn0 14630* A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  X  =/=  0
 )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
 
Theoremntrivcvgfvn0 14631* Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  X  =/=  0
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `  N )  =/=  0 )
 
Theoremntrivcvgtail 14632* A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  X  =/=  0
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (
 (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\  seq
 N (  x.  ,  F )  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) )
 
Theoremntrivcvgmullem 14633* Lemma for ntrivcvgmul 14634. (Contributed by Scott Fenton, 19-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  P  e.  Z )   &    |-  ( ph  ->  X  =/=  0 )   &    |-  ( ph  ->  Y  =/=  0 )   &    |-  ( ph  ->  seq N (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  seq P (  x. 
 ,  G )  ~~>  Y )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  CC )   &    |-  ( ph  ->  N  <_  P )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  E. q  e.  Z  E. w ( w  =/=  0  /\  seq q (  x.  ,  H )  ~~>  w ) )
 
Theoremntrivcvgmul 14634* The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  E. m  e.  Z  E. z ( z  =/=  0  /\  seq m (  x.  ,  G )  ~~>  z ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  E. p  e.  Z  E. w ( w  =/=  0  /\  seq p (  x.  ,  H )  ~~>  w ) )
 
5.10.12.3  Complex products
 
Syntaxcprod 14635 Extend class notation to include complex products.
 class  prod_ k  e.  A  B
 
Definitiondf-prod 14636* Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sum 14417 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.)
 |- 
 prod_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>=
 `  m ) E. y ( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  y )  /\  seq m (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ (
 f `  n )  /  k ]_ B ) ) `  m ) ) ) )
 
Theoremprodex 14637 A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.)
 |- 
 prod_ k  e.  A  B  e.  _V
 
Theoremprodeq1f 14638 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ k A   &    |-  F/_ k B   =>    |-  ( A  =  B  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq1 14639* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  ( A  =  B  -> 
 prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremnfcprod1 14640* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k A   =>    |-  F/_ k prod_ k  e.  A  B
 
Theoremnfcprod 14641* Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x prod_ k  e.  A  B
 
Theoremprodeq2w 14642* Equality theorem for product, when the class expressions  B and  C are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2ii 14643* Equality theorem for product, with the class expressions  B and  C guarded by  _I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2 14644* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  e.  A  B  =  C  -> 
 prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremcbvprod 14645* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodv 14646* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  prod_
 j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodi 14647* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq1i 14648* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
 
Theoremprodeq2i 14649* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  prod_
 k  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq12i 14650* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  D
 
Theoremprodeq1d 14651* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq2d 14652* Equality deduction for product. Note that unlike prodeq2dv 14653, 
k may occur in  ph. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2dv 14653* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2sdv 14654* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theorem2cprodeq2dv 14655* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  D )
 
Theoremprodeq12dv 14656* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodeq12rdv 14657* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprod2id 14658* The second class argument to a product can be chosen so that it is always a set. (Contributed by Scott Fenton, 4-Dec-2017.)
 |- 
 prod_ k  e.  A  B  =  prod_ k  e.  A  (  _I  `  B )
 
Theoremprodrblem 14659* Lemma for prodrb 14662. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
Theoremfprodcvg 14660* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x. 
 ,  F ) `  N ) )
 
Theoremprodrblem2 14661* Lemma for prodrb 14662. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   =>    |-  ( ( ph  /\  N  e.  ( ZZ>= `  M )
 )  ->  (  seq M (  x.  ,  F ) 
 ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodrb 14662* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodmolem3 14663* Lemma for prodmo 14666. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   &    |-  H  =  ( j  e.  NN  |->  [_ ( K `  j ) 
 /  k ]_ B )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )   &    |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
Theoremprodmolem2a 14664* Lemma for prodmo 14666. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   &    |-  H  =  ( j  e.  NN  |->  [_ ( K `  j ) 
 /  k ]_ B )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  f :
 ( 1 ... N )
 -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( # `
  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq 1 (  x. 
 ,  G ) `  N ) )
 
Theoremprodmolem2 14665* Lemma for prodmo 14666. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
Theoremprodmo 14666* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
 
Theoremzprod 14667* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  (  ~~>  ` 
 seq M (  x. 
 ,  F ) ) )
 
Theoremiprod 14668* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
 
Theoremzprodn0 14669* Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X  =/=  0
 )   &    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )   &    |-  ( ph  ->  A 
 C_  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  X )
 
Theoremiprodn0 14670* Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X  =/=  0
 )   &    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  X )
 
5.10.12.4  Finite products
 
Theoremfprod 14671* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( 
 seq 1 (  x. 
 ,  G ) `  M ) )
 
Theoremfprodntriv 14672* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
 )
 
Theoremprod0 14673 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |- 
 prod_ k  e.  (/)  A  =  1
 
Theoremprod1 14674* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( ( A  C_  ( ZZ>= `  M )  \/  A  e.  Fin )  -> 
 prod_ k  e.  A  1  =  1 )
 
Theoremprodfc 14675* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
 |- 
 prod_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  prod_ k  e.  A  B
 
Theoremfprodf1o 14676* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
 
Theoremprodss 14677* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>=
 `  M ) E. y ( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremfprodss 14678* Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  prod_
 k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremfprodser 14679* A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  (  seq M (  x.  ,  F ) `
  N ) )
 
Theoremfprodcl2lem 14680* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
 
Theoremfprodcllem 14681* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  1  e.  S )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  e.  S )
 
Theoremfprodcl 14682* Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  CC )
 
Theoremfprodrecl 14683* Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  RR )
 
Theoremfprodzcl 14684* Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  ZZ )
 
Theoremfprodnncl 14685* Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  NN )
 
Theoremfprodrpcl 14686* Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR+ )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  RR+ )
 
Theoremfprodnn0cl 14687* Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN0 )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  NN0 )
 
Theoremfprodcllemf 14688* Finite product closure lemma. A version of fprodcllem 14681 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  S 
 C_  CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  1  e.  S )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  e.  S )
 
Theoremfprodreclf 14689* Closure of a finite product of real numbers. A version of fprodrecl 14683 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  RR )
 
Theoremfprodmul 14690* The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) )
 
Theoremfproddiv 14691* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =/=  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  / 
 prod_ k  e.  A  C ) )
 
Theoremprodsn 14692* A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremfprod1 14693* A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  prod_ k  e.  ( M ... M ) A  =  B )
 
Theoremprodsnf 14694* A product of a singleton is the term. A version of prodsn 14692 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremclimprod1 14695 The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  seq
 M (  x.  ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremfprodsplit 14696* Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodm1 14697* Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  B ) )
 
Theoremfprod1p 14698* Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( B  x.  prod_ k  e.  (
 ( M  +  1 ) ... N ) A ) )
 
Theoremfprodp1 14699* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  B ) )
 
Theoremfprodm1s 14700* Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >