MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prslem Structured version   Visualization version   Unicode version

Theorem prslem 16931
Description: Lemma for prsref 16932 and prstr 16933. (Contributed by Mario Carneiro, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b  |-  B  =  ( Base `  K
)
isprs.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
prslem  |-  ( ( K  e.  Preset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )

Proof of Theorem prslem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprs.b . . . 4  |-  B  =  ( Base `  K
)
2 isprs.l . . . 4  |-  .<_  =  ( le `  K )
31, 2isprs 16930 . . 3  |-  ( K  e.  Preset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
43simprbi 480 . 2  |-  ( K  e.  Preset  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
5 breq12 4658 . . . . 5  |-  ( ( x  =  X  /\  x  =  X )  ->  ( x  .<_  x  <->  X  .<_  X ) )
65anidms 677 . . . 4  |-  ( x  =  X  ->  (
x  .<_  x  <->  X  .<_  X ) )
7 breq1 4656 . . . . . 6  |-  ( x  =  X  ->  (
x  .<_  y  <->  X  .<_  y ) )
87anbi1d 741 . . . . 5  |-  ( x  =  X  ->  (
( x  .<_  y  /\  y  .<_  z )  <->  ( X  .<_  y  /\  y  .<_  z ) ) )
9 breq1 4656 . . . . 5  |-  ( x  =  X  ->  (
x  .<_  z  <->  X  .<_  z ) )
108, 9imbi12d 334 . . . 4  |-  ( x  =  X  ->  (
( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z )  <-> 
( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z ) ) )
116, 10anbi12d 747 . . 3  |-  ( x  =  X  ->  (
( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )  <->  ( X  .<_  X  /\  ( ( X 
.<_  y  /\  y  .<_  z )  ->  X  .<_  z ) ) ) )
12 breq2 4657 . . . . . 6  |-  ( y  =  Y  ->  ( X  .<_  y  <->  X  .<_  Y ) )
13 breq1 4656 . . . . . 6  |-  ( y  =  Y  ->  (
y  .<_  z  <->  Y  .<_  z ) )
1412, 13anbi12d 747 . . . . 5  |-  ( y  =  Y  ->  (
( X  .<_  y  /\  y  .<_  z )  <->  ( X  .<_  Y  /\  Y  .<_  z ) ) )
1514imbi1d 331 . . . 4  |-  ( y  =  Y  ->  (
( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z )  <-> 
( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z ) ) )
1615anbi2d 740 . . 3  |-  ( y  =  Y  ->  (
( X  .<_  X  /\  ( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z ) )  <->  ( X  .<_  X  /\  ( ( X 
.<_  Y  /\  Y  .<_  z )  ->  X  .<_  z ) ) ) )
17 breq2 4657 . . . . . 6  |-  ( z  =  Z  ->  ( Y  .<_  z  <->  Y  .<_  Z ) )
1817anbi2d 740 . . . . 5  |-  ( z  =  Z  ->  (
( X  .<_  Y  /\  Y  .<_  z )  <->  ( X  .<_  Y  /\  Y  .<_  Z ) ) )
19 breq2 4657 . . . . 5  |-  ( z  =  Z  ->  ( X  .<_  z  <->  X  .<_  Z ) )
2018, 19imbi12d 334 . . . 4  |-  ( z  =  Z  ->  (
( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z )  <-> 
( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )
2120anbi2d 740 . . 3  |-  ( z  =  Z  ->  (
( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z ) )  <->  ( X  .<_  X  /\  ( ( X 
.<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) ) )
2211, 16, 21rspc3v 3325 . 2  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x 
.<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )  -> 
( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) ) )
234, 22mpan9 486 1  |-  ( ( K  e.  Preset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948    Preset cpreset 16926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-preset 16928
This theorem is referenced by:  prsref  16932  prstr  16933
  Copyright terms: Public domain W3C validator