| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isprs | Structured version Visualization version Unicode version | ||
| Description: Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| isprs.b |
|
| isprs.l |
|
| Ref | Expression |
|---|---|
| isprs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . 4
| |
| 2 | fveq2 6191 |
. . . . 5
| |
| 3 | 2 | sbceq1d 3440 |
. . . 4
|
| 4 | 1, 3 | sbceqbid 3442 |
. . 3
|
| 5 | fvex 6201 |
. . . 4
| |
| 6 | fvex 6201 |
. . . 4
| |
| 7 | isprs.b |
. . . . . . 7
| |
| 8 | eqtr3 2643 |
. . . . . . 7
| |
| 9 | 7, 8 | mpan2 707 |
. . . . . 6
|
| 10 | raleq 3138 |
. . . . . . . 8
| |
| 11 | 10 | raleqbi1dv 3146 |
. . . . . . 7
|
| 12 | 11 | raleqbi1dv 3146 |
. . . . . 6
|
| 13 | 9, 12 | syl 17 |
. . . . 5
|
| 14 | isprs.l |
. . . . . . 7
| |
| 15 | eqtr3 2643 |
. . . . . . 7
| |
| 16 | 14, 15 | mpan2 707 |
. . . . . 6
|
| 17 | breq 4655 |
. . . . . . . . 9
| |
| 18 | breq 4655 |
. . . . . . . . . . 11
| |
| 19 | breq 4655 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | anbi12d 747 |
. . . . . . . . . 10
|
| 21 | breq 4655 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | imbi12d 334 |
. . . . . . . . 9
|
| 23 | 17, 22 | anbi12d 747 |
. . . . . . . 8
|
| 24 | 23 | ralbidv 2986 |
. . . . . . 7
|
| 25 | 24 | 2ralbidv 2989 |
. . . . . 6
|
| 26 | 16, 25 | syl 17 |
. . . . 5
|
| 27 | 13, 26 | sylan9bb 736 |
. . . 4
|
| 28 | 5, 6, 27 | sbc2ie 3505 |
. . 3
|
| 29 | 4, 28 | syl6bb 276 |
. 2
|
| 30 | df-preset 16928 |
. 2
| |
| 31 | 29, 30 | elab4g 3355 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-preset 16928 |
| This theorem is referenced by: prslem 16931 ispos2 16948 ressprs 29655 oduprs 29656 |
| Copyright terms: Public domain | W3C validator |