![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssned | Structured version Visualization version Unicode version |
Description: Proper subclasses are unequal. Deduction form of pssne 3703. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
pssssd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pssned |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pssne 3703 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-pss 3590 |
This theorem is referenced by: ackbij1lem15 9056 canthnumlem 9470 canthp1lem2 9475 mrieqv2d 16299 slwpss 18027 topdifinffinlem 33195 lsatssn0 34289 islshpcv 34340 lkrpssN 34450 |
Copyright terms: Public domain | W3C validator |