MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnumlem Structured version   Visualization version   Unicode version

Theorem canthnumlem 9470
Description: Lemma for canthnum 9471. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
canth4.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
canth4.2  |-  B  = 
U. dom  W
canth4.3  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
Assertion
Ref Expression
canthnumlem  |-  ( A  e.  V  ->  -.  F : ( ~P A  i^i  dom  card ) -1-1-> A )
Distinct variable groups:    x, r,
y, A    B, r, x, y    F, r, x, y    V, r, x, y   
y, C    W, r, x, y
Allowed substitution hints:    C( x, r)

Proof of Theorem canthnumlem
StepHypRef Expression
1 f1f 6101 . . . . 5  |-  ( F : ( ~P A  i^i  dom  card ) -1-1-> A  ->  F : ( ~P A  i^i  dom  card ) --> A )
2 ssid 3624 . . . . . 6  |-  ( ~P A  i^i  dom  card )  C_  ( ~P A  i^i  dom  card )
3 canth4.1 . . . . . . 7  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
4 canth4.2 . . . . . . 7  |-  B  = 
U. dom  W
5 canth4.3 . . . . . . 7  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
63, 4, 5canth4 9469 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) --> A  /\  ( ~P A  i^i  dom  card )  C_  ( ~P A  i^i  dom  card ) )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
72, 6mp3an3 1413 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) --> A )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
81, 7sylan2 491 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
98simp3d 1075 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( F `  B )  =  ( F `  C ) )
10 simpr 477 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  F : ( ~P A  i^i  dom  card ) -1-1-> A )
118simp1d 1073 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  C_  A
)
12 elpw2g 4827 . . . . . . 7  |-  ( A  e.  V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
1312adantr 481 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B  e. 
~P A  <->  B  C_  A
) )
1411, 13mpbird 247 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  ~P A )
15 eqid 2622 . . . . . . . . . . . . 13  |-  B  =  B
16 eqid 2622 . . . . . . . . . . . . 13  |-  ( W `
 B )  =  ( W `  B
)
1715, 16pm3.2i 471 . . . . . . . . . . . 12  |-  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) )
18 elex 3212 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  _V )
1918adantr 481 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  A  e.  _V )
2010, 1syl 17 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  F : ( ~P A  i^i  dom  card ) --> A )
2120ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A
)
223, 19, 21, 4fpwwe 9468 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( B W ( W `  B )  /\  ( F `  B )  e.  B )  <->  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) ) ) )
2317, 22mpbiri 248 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B W ( W `  B
)  /\  ( F `  B )  e.  B
) )
2423simpld 475 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B W ( W `  B ) )
253, 19fpwwelem 9467 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B W ( W `  B
)  <->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) ) ) )
2624, 25mpbid 222 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) ) )
2726simprd 479 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) )
2827simpld 475 . . . . . . 7  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( W `  B )  We  B
)
29 fvex 6201 . . . . . . . 8  |-  ( W `
 B )  e. 
_V
30 weeq1 5102 . . . . . . . 8  |-  ( r  =  ( W `  B )  ->  (
r  We  B  <->  ( W `  B )  We  B
) )
3129, 30spcev 3300 . . . . . . 7  |-  ( ( W `  B )  We  B  ->  E. r 
r  We  B )
3228, 31syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  E. r  r  We  B )
33 ween 8858 . . . . . 6  |-  ( B  e.  dom  card  <->  E. r 
r  We  B )
3432, 33sylibr 224 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  dom  card )
3514, 34elind 3798 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  ( ~P A  i^i  dom  card ) )
368simp2d 1074 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C.  B
)
3736pssssd 3704 . . . . . . 7  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C_  B
)
3837, 11sstrd 3613 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C_  A
)
39 elpw2g 4827 . . . . . . 7  |-  ( A  e.  V  ->  ( C  e.  ~P A  <->  C 
C_  A ) )
4039adantr 481 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( C  e. 
~P A  <->  C  C_  A
) )
4138, 40mpbird 247 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  ~P A )
42 ssnum 8862 . . . . . 6  |-  ( ( B  e.  dom  card  /\  C  C_  B )  ->  C  e.  dom  card )
4334, 37, 42syl2anc 693 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  dom  card )
4441, 43elind 3798 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  ( ~P A  i^i  dom  card ) )
45 f1fveq 6519 . . . 4  |-  ( ( F : ( ~P A  i^i  dom  card ) -1-1-> A  /\  ( B  e.  ( ~P A  i^i  dom  card )  /\  C  e.  ( ~P A  i^i  dom  card ) ) )  ->  ( ( F `  B )  =  ( F `  C )  <->  B  =  C ) )
4610, 35, 44, 45syl12anc 1324 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( F `
 B )  =  ( F `  C
)  <->  B  =  C
) )
479, 46mpbid 222 . 2  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  =  C )
4836pssned 3705 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  =/=  B
)
4948necomd 2849 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  =/=  C
)
5049neneqd 2799 . 2  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  -.  B  =  C )
5147, 50pm2.65da 600 1  |-  ( A  e.  V  ->  -.  F : ( ~P A  i^i  dom  card ) -1-1-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574    C. wpss 3575   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653   {copab 4712    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-1st 7168  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-oi 8415  df-card 8765
This theorem is referenced by:  canthnum  9471
  Copyright terms: Public domain W3C validator