MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   Unicode version

Theorem pssssd 3704
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1  |-  ( ph  ->  A  C.  B )
Assertion
Ref Expression
pssssd  |-  ( ph  ->  A  C_  B )

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2  |-  ( ph  ->  A  C.  B )
2 pssss 3702 . 2  |-  ( A 
C.  B  ->  A  C_  B )
31, 2syl 17 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    C_ wss 3574    C. wpss 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-pss 3590
This theorem is referenced by:  fin23lem36  9170  fin23lem39  9172  canthnumlem  9470  canthp1lem2  9475  elprnq  9813  npomex  9818  prlem934  9855  ltexprlem7  9864  wuncn  9991  mrieqv2d  16299  slwpss  18027  pgpfac1lem5  18478  lbspss  19082  lsppratlem1  19147  lsppratlem3  19149  lsppratlem4  19150  lrelat  34301  lsatcvatlem  34336
  Copyright terms: Public domain W3C validator