Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsetN Structured version   Visualization version   Unicode version

Theorem psubclsetN 35222
Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a  |-  A  =  ( Atoms `  K )
psubclset.p  |-  ._|_  =  ( _|_P `  K
)
psubclset.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
psubclsetN  |-  ( K  e.  B  ->  C  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
Distinct variable groups:    A, s    K, s
Allowed substitution hints:    B( s)    C( s)   
._|_ ( s)

Proof of Theorem psubclsetN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 psubclset.c . . 3  |-  C  =  ( PSubCl `  K )
3 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 psubclset.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2674 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65sseq2d 3633 . . . . . 6  |-  ( k  =  K  ->  (
s  C_  ( Atoms `  k )  <->  s  C_  A ) )
7 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( _|_P `  k )  =  ( _|_P `  K ) )
8 psubclset.p . . . . . . . . 9  |-  ._|_  =  ( _|_P `  K
)
97, 8syl6eqr 2674 . . . . . . . 8  |-  ( k  =  K  ->  ( _|_P `  k )  =  ._|_  )
109fveq1d 6193 . . . . . . . 8  |-  ( k  =  K  ->  (
( _|_P `  k ) `  s
)  =  (  ._|_  `  s ) )
119, 10fveq12d 6197 . . . . . . 7  |-  ( k  =  K  ->  (
( _|_P `  k ) `  (
( _|_P `  k ) `  s
) )  =  ( 
._|_  `  (  ._|_  `  s
) ) )
1211eqeq1d 2624 . . . . . 6  |-  ( k  =  K  ->  (
( ( _|_P `  k ) `  (
( _|_P `  k ) `  s
) )  =  s  <-> 
(  ._|_  `  (  ._|_  `  s ) )  =  s ) )
136, 12anbi12d 747 . . . . 5  |-  ( k  =  K  ->  (
( s  C_  ( Atoms `  k )  /\  ( ( _|_P `  k ) `  (
( _|_P `  k ) `  s
) )  =  s )  <->  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) ) )
1413abbidv 2741 . . . 4  |-  ( k  =  K  ->  { s  |  ( s  C_  ( Atoms `  k )  /\  ( ( _|_P `  k ) `  (
( _|_P `  k ) `  s
) )  =  s ) }  =  {
s  |  ( s 
C_  A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) } )
15 df-psubclN 35221 . . . 4  |-  PSubCl  =  ( k  e.  _V  |->  { s  |  ( s 
C_  ( Atoms `  k
)  /\  ( ( _|_P `  k ) `
 ( ( _|_P `  k ) `
 s ) )  =  s ) } )
16 fvex 6201 . . . . . . 7  |-  ( Atoms `  K )  e.  _V
174, 16eqeltri 2697 . . . . . 6  |-  A  e. 
_V
1817pwex 4848 . . . . 5  |-  ~P A  e.  _V
19 selpw 4165 . . . . . . . 8  |-  ( s  e.  ~P A  <->  s  C_  A )
2019anbi1i 731 . . . . . . 7  |-  ( ( s  e.  ~P A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s )  <->  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) )
2120abbii 2739 . . . . . 6  |-  { s  |  ( s  e. 
~P A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) }  =  {
s  |  ( s 
C_  A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) }
22 ssab2 3686 . . . . . 6  |-  { s  |  ( s  e. 
~P A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) }  C_  ~P A
2321, 22eqsstr3i 3636 . . . . 5  |-  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } 
C_  ~P A
2418, 23ssexi 4803 . . . 4  |-  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) }  e.  _V
2514, 15, 24fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  ( PSubCl `
 K )  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
262, 25syl5eq 2668 . 2  |-  ( K  e.  _V  ->  C  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
271, 26syl 17 1  |-  ( K  e.  B  ->  C  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   ` cfv 5888   Atomscatm 34550   _|_PcpolN 35188   PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-psubclN 35221
This theorem is referenced by:  ispsubclN  35223
  Copyright terms: Public domain W3C validator