MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwun Structured version   Visualization version   Unicode version

Theorem pwun 5022
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwun  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ~P ( A  u.  B )  =  ( ~P A  u.  ~P B ) )

Proof of Theorem pwun
StepHypRef Expression
1 pwunss 5019 . . 3  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
21biantru 526 . 2  |-  ( ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
3 pwssun 5020 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B ) )
4 eqss 3618 . 2  |-  ( ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
52, 3, 43bitr4i 292 1  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ~P ( A  u.  B )  =  ( ~P A  u.  ~P B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   ~Pcpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pw 4160  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator