| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwun | Structured version Visualization version Unicode version | ||
| Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwunss 5019 |
. . 3
| |
| 2 | 1 | biantru 526 |
. 2
|
| 3 | pwssun 5020 |
. 2
| |
| 4 | eqss 3618 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-pw 4160 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |