MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsinxp Structured version   Visualization version   Unicode version

Theorem qsinxp 7823
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Assertion
Ref Expression
qsinxp  |-  ( ( R " A ) 
C_  A  ->  ( A /. R )  =  ( A /. ( R  i^i  ( A  X.  A ) ) ) )

Proof of Theorem qsinxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecinxp 7822 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  x  e.  A )  ->  [ x ] R  =  [ x ] ( R  i^i  ( A  X.  A ) ) )
21eqeq2d 2632 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  x  e.  A )  ->  ( y  =  [
x ] R  <->  y  =  [ x ] ( R  i^i  ( A  X.  A ) ) ) )
32rexbidva 3049 . . 3  |-  ( ( R " A ) 
C_  A  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  y  =  [ x ] ( R  i^i  ( A  X.  A
) ) ) )
43abbidv 2741 . 2  |-  ( ( R " A ) 
C_  A  ->  { y  |  E. x  e.  A  y  =  [
x ] R }  =  { y  |  E. x  e.  A  y  =  [ x ] ( R  i^i  ( A  X.  A ) ) } )
5 df-qs 7748 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
6 df-qs 7748 . 2  |-  ( A /. ( R  i^i  ( A  X.  A
) ) )  =  { y  |  E. x  e.  A  y  =  [ x ] ( R  i^i  ( A  X.  A ) ) }
74, 5, 63eqtr4g 2681 1  |-  ( ( R " A ) 
C_  A  ->  ( A /. R )  =  ( A /. ( R  i^i  ( A  X.  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    i^i cin 3573    C_ wss 3574    X. cxp 5112   "cima 5117   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744  df-qs 7748
This theorem is referenced by:  pi1buni  22840  pi1bas3  22843
  Copyright terms: Public domain W3C validator