MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusin Structured version   Visualization version   Unicode version

Theorem qusin 16204
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusin.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusin.e  |-  ( ph  ->  .~  e.  W )
qusin.r  |-  ( ph  ->  R  e.  Z )
qusin.s  |-  ( ph  ->  (  .~  " V
)  C_  V )
Assertion
Ref Expression
qusin  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )

Proof of Theorem qusin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5  |-  ( ph  ->  (  .~  " V
)  C_  V )
2 ecinxp 7822 . . . . 5  |-  ( ( (  .~  " V
)  C_  V  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V ) ) )
31, 2sylan 488 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V
) ) )
43mpteq2dva 4744 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) ) )
54oveq1d 6665 . 2  |-  ( ph  ->  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R )  =  ( ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
6 qusin.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
7 qusin.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
8 eqid 2622 . . 3  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
9 qusin.e . . 3  |-  ( ph  ->  .~  e.  W )
10 qusin.r . . 3  |-  ( ph  ->  R  e.  Z )
116, 7, 8, 9, 10qusval 16202 . 2  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
12 eqidd 2623 . . 3  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) ) )
13 eqid 2622 . . 3  |-  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )
14 inex1g 4801 . . . 4  |-  (  .~  e.  W  ->  (  .~  i^i  ( V  X.  V
) )  e.  _V )
159, 14syl 17 . . 3  |-  ( ph  ->  (  .~  i^i  ( V  X.  V ) )  e.  _V )
1612, 7, 13, 15, 10qusval 16202 . 2  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( ( x  e.  V  |->  [ x ]
(  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
175, 11, 163eqtr4d 2666 1  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729    X. cxp 5112   "cima 5117   ` cfv 5888  (class class class)co 6650   [cec 7740   Basecbs 15857    "s cimas 16164    /.s cqus 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ec 7744  df-qus 16169
This theorem is referenced by:  pi1addf  22847  pi1addval  22848  pi1grplem  22849
  Copyright terms: Public domain W3C validator