MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Visualization version   Unicode version

Theorem pi1grplem 22849
Description: Lemma for pi1grp 22850. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g  |-  G  =  ( J  pi1  Y )
pi1fval.b  |-  B  =  ( Base `  G
)
pi1fval.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1fval.4  |-  ( ph  ->  Y  e.  X )
pi1grplem.z  |-  .0.  =  ( ( 0 [,] 1 )  X.  { Y } )
Assertion
Ref Expression
pi1grplem  |-  ( ph  ->  ( G  e.  Grp  /\ 
[  .0.  ] ( 
~=ph  `  J )  =  ( 0g `  G
) ) )

Proof of Theorem pi1grplem
Dummy variables  a 
b  c  d  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5  |-  G  =  ( J  pi1  Y )
2 pi1fval.3 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 pi1fval.4 . . . . 5  |-  ( ph  ->  Y  e.  X )
4 eqid 2622 . . . . 5  |-  ( J 
Om1  Y )  =  ( J  Om1  Y )
51, 2, 3, 4pi1val 22837 . . . 4  |-  ( ph  ->  G  =  ( ( J  Om1  Y )  /.s  (  ~=ph  `  J ) ) )
6 pi1fval.b . . . . . 6  |-  B  =  ( Base `  G
)
76a1i 11 . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
8 eqidd 2623 . . . . 5  |-  ( ph  ->  ( Base `  ( J  Om1  Y ) )  =  ( Base `  ( J  Om1  Y ) ) )
91, 2, 3, 4, 7, 8pi1buni 22840 . . . 4  |-  ( ph  ->  U. B  =  (
Base `  ( J  Om1  Y )
) )
10 fvexd 6203 . . . 4  |-  ( ph  ->  (  ~=ph  `  J )  e.  _V )
11 ovexd 6680 . . . 4  |-  ( ph  ->  ( J  Om1  Y )  e.  _V )
121, 2, 3, 4, 7, 9pi1blem 22839 . . . . 5  |-  ( ph  ->  ( ( (  ~=ph  `  J ) " U. B )  C_  U. B  /\  U. B  C_  (
II  Cn  J )
) )
1312simpld 475 . . . 4  |-  ( ph  ->  ( (  ~=ph  `  J
) " U. B
)  C_  U. B )
145, 9, 10, 11, 13qusin 16204 . . 3  |-  ( ph  ->  G  =  ( ( J  Om1  Y )  /.s  ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) ) )
154, 2, 3om1plusg 22834 . . 3  |-  ( ph  ->  ( *p `  J
)  =  ( +g  `  ( J  Om1  Y ) ) )
16 phtpcer 22794 . . . . 5  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
1716a1i 11 . . . 4  |-  ( ph  ->  (  ~=ph  `  J )  Er  ( II  Cn  J ) )
1812simprd 479 . . . 4  |-  ( ph  ->  U. B  C_  (
II  Cn  J )
)
1917, 18erinxp 7821 . . 3  |-  ( ph  ->  ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )  Er  U. B
)
20 eqid 2622 . . . . 5  |-  ( ( 
~=ph  `  J )  i^i  ( U. B  X.  U. B ) )  =  ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )
21 eqid 2622 . . . . 5  |-  ( +g  `  ( J  Om1  Y ) )  =  ( +g  `  ( J  Om1  Y ) )
221, 2, 3, 7, 20, 4, 21pi1cpbl 22844 . . . 4  |-  ( ph  ->  ( ( a ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) c  /\  b ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) d )  ->  (
a ( +g  `  ( J  Om1  Y ) ) b ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) ( c ( +g  `  ( J  Om1  Y ) ) d ) ) )
2315oveqd 6667 . . . . 5  |-  ( ph  ->  ( a ( *p
`  J ) b )  =  ( a ( +g  `  ( J  Om1  Y ) ) b ) )
2415oveqd 6667 . . . . 5  |-  ( ph  ->  ( c ( *p
`  J ) d )  =  ( c ( +g  `  ( J  Om1  Y ) ) d ) )
2523, 24breq12d 4666 . . . 4  |-  ( ph  ->  ( ( a ( *p `  J ) b ) ( ( 
~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) ( c ( *p `  J ) d )  <-> 
( a ( +g  `  ( J  Om1  Y ) ) b ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B
) ) ( c ( +g  `  ( J  Om1  Y ) ) d ) ) )
2622, 25sylibrd 249 . . 3  |-  ( ph  ->  ( ( a ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) c  /\  b ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) d )  ->  (
a ( *p `  J ) b ) ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) ( c ( *p `  J ) d ) ) )
2723ad2ant1 1082 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  J  e.  (TopOn `  X
) )
2833ad2ant1 1082 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  Y  e.  X )
2993ad2ant1 1082 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  U. B  =  ( Base `  ( J  Om1  Y ) ) )
30 simp2 1062 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  x  e.  U. B )
31 simp3 1063 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  -> 
y  e.  U. B
)
324, 27, 28, 29, 30, 31om1addcl 22833 . . 3  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  -> 
( x ( *p
`  J ) y )  e.  U. B
)
332adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  J  e.  (TopOn `  X ) )
343adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  Y  e.  X
)
359adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  U. B  =  (
Base `  ( J  Om1  Y )
) )
36323adant3r3 1276 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ( *p `  J ) y )  e.  U. B )
37 simpr3 1069 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  z  e.  U. B )
384, 33, 34, 35, 36, 37om1addcl 22833 . . . 4  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( ( x ( *p `  J
) y ) ( *p `  J ) z )  e.  U. B )
39 simpr1 1067 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  x  e.  U. B )
40 simpr2 1068 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  y  e.  U. B )
414, 33, 34, 35, 40, 37om1addcl 22833 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ( *p `  J ) z )  e.  U. B )
424, 33, 34, 35, 39, 41om1addcl 22833 . . . 4  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ( *p `  J ) ( y ( *p
`  J ) z ) )  e.  U. B )
431, 2, 3, 7pi1eluni 22842 . . . . . . . 8  |-  ( ph  ->  ( x  e.  U. B 
<->  ( x  e.  ( II  Cn  J )  /\  ( x ` 
0 )  =  Y  /\  ( x ` 
1 )  =  Y ) ) )
4443biimpa 501 . . . . . . 7  |-  ( (
ph  /\  x  e.  U. B )  ->  (
x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y  /\  ( x `  1
)  =  Y ) )
45443ad2antr1 1226 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x  e.  ( II  Cn  J
)  /\  ( x `  0 )  =  Y  /\  ( x `
 1 )  =  Y ) )
4645simp1d 1073 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  x  e.  ( II  Cn  J ) )
476a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  B  =  (
Base `  G )
)
481, 33, 34, 47pi1eluni 22842 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y  e. 
U. B  <->  ( y  e.  ( II  Cn  J
)  /\  ( y `  0 )  =  Y  /\  ( y `
 1 )  =  Y ) ) )
4940, 48mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y  e.  ( II  Cn  J
)  /\  ( y `  0 )  =  Y  /\  ( y `
 1 )  =  Y ) )
5049simp1d 1073 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  y  e.  ( II  Cn  J ) )
511, 33, 34, 47pi1eluni 22842 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( z  e. 
U. B  <->  ( z  e.  ( II  Cn  J
)  /\  ( z `  0 )  =  Y  /\  ( z `
 1 )  =  Y ) ) )
5237, 51mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( z  e.  ( II  Cn  J
)  /\  ( z `  0 )  =  Y  /\  ( z `
 1 )  =  Y ) )
5352simp1d 1073 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  z  e.  ( II  Cn  J ) )
5445simp3d 1075 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ` 
1 )  =  Y )
5549simp2d 1074 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ` 
0 )  =  Y )
5654, 55eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ` 
1 )  =  ( y `  0 ) )
5749simp3d 1075 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ` 
1 )  =  Y )
5852simp2d 1074 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( z ` 
0 )  =  Y )
5957, 58eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ` 
1 )  =  ( z `  0 ) )
60 eqid 2622 . . . . 5  |-  ( u  e.  ( 0 [,] 1 )  |->  if ( u  <_  ( 1  /  2 ) ,  if ( u  <_ 
( 1  /  4
) ,  ( 2  x.  u ) ,  ( u  +  ( 1  /  4 ) ) ) ,  ( ( u  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( u  e.  ( 0 [,] 1 )  |->  if ( u  <_  (
1  /  2 ) ,  if ( u  <_  ( 1  / 
4 ) ,  ( 2  x.  u ) ,  ( u  +  ( 1  /  4
) ) ) ,  ( ( u  / 
2 )  +  ( 1  /  2 ) ) ) )
6146, 50, 53, 56, 59, 60pcoass 22824 . . . 4  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( ( x ( *p `  J
) y ) ( *p `  J ) z ) (  ~=ph  `  J ) ( x ( *p `  J
) ( y ( *p `  J ) z ) ) )
62 brinxp2 5180 . . . 4  |-  ( ( ( x ( *p
`  J ) y ) ( *p `  J ) z ) ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) ( x ( *p `  J ) ( y ( *p
`  J ) z ) )  <->  ( (
( x ( *p
`  J ) y ) ( *p `  J ) z )  e.  U. B  /\  ( x ( *p
`  J ) ( y ( *p `  J ) z ) )  e.  U. B  /\  ( ( x ( *p `  J ) y ) ( *p
`  J ) z ) (  ~=ph  `  J
) ( x ( *p `  J ) ( y ( *p
`  J ) z ) ) ) )
6338, 42, 61, 62syl3anbrc 1246 . . 3  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( ( x ( *p `  J
) y ) ( *p `  J ) z ) ( ( 
~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) ( x ( *p `  J ) ( y ( *p `  J
) z ) ) )
64 pi1grplem.z . . . . . 6  |-  .0.  =  ( ( 0 [,] 1 )  X.  { Y } )
6564pcoptcl 22821 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  X )  ->  (  .0.  e.  ( II  Cn  J )  /\  (  .0.  `  0 )  =  Y  /\  (  .0.  `  1 )  =  Y ) )
662, 3, 65syl2anc 693 . . . 4  |-  ( ph  ->  (  .0.  e.  ( II  Cn  J )  /\  (  .0.  ` 
0 )  =  Y  /\  (  .0.  ` 
1 )  =  Y ) )
671, 2, 3, 7pi1eluni 22842 . . . 4  |-  ( ph  ->  (  .0.  e.  U. B 
<->  (  .0.  e.  ( II  Cn  J )  /\  (  .0.  ` 
0 )  =  Y  /\  (  .0.  ` 
1 )  =  Y ) ) )
6866, 67mpbird 247 . . 3  |-  ( ph  ->  .0.  e.  U. B
)
692adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  J  e.  (TopOn `  X )
)
703adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  Y  e.  X )
719adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  U. B  =  ( Base `  ( J  Om1  Y ) ) )
7268adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  .0.  e.  U. B )
73 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  x  e.  U. B )
744, 69, 70, 71, 72, 73om1addcl 22833 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (  .0.  ( *p `  J
) x )  e. 
U. B )
7518sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  x  e.  ( II  Cn  J
) )
7644simp2d 1074 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
x `  0 )  =  Y )
7764pcopt 22822 . . . . 5  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y )  ->  (  .0.  ( *p `  J ) x ) (  ~=ph  `  J
) x )
7875, 76, 77syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (  .0.  ( *p `  J
) x ) ( 
~=ph  `  J ) x )
79 brinxp2 5180 . . . 4  |-  ( (  .0.  ( *p `  J ) x ) ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) x  <->  ( (  .0.  ( *p `  J
) x )  e. 
U. B  /\  x  e.  U. B  /\  (  .0.  ( *p `  J
) x ) ( 
~=ph  `  J ) x ) )
8074, 73, 78, 79syl3anbrc 1246 . . 3  |-  ( (
ph  /\  x  e.  U. B )  ->  (  .0.  ( *p `  J
) x ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) x )
81 eqid 2622 . . . . . . 7  |-  ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) )  =  ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) )
8281pcorevcl 22825 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) )  e.  ( II  Cn  J )  /\  ( ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) ) `
 0 )  =  ( x `  1
)  /\  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) ) `  1 )  =  ( x ` 
0 ) ) )
8375, 82syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) )  e.  ( II  Cn  J )  /\  ( ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) ) `
 0 )  =  ( x `  1
)  /\  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) ) `  1 )  =  ( x ` 
0 ) ) )
8483simp1d 1073 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) )  e.  ( II 
Cn  J ) )
8583simp2d 1074 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  0
)  =  ( x `
 1 ) )
8644simp3d 1075 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
x `  1 )  =  Y )
8785, 86eqtrd 2656 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  0
)  =  Y )
8883simp3d 1075 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  1
)  =  ( x `
 0 ) )
8988, 76eqtrd 2656 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  1
)  =  Y )
901, 2, 3, 7pi1eluni 22842 . . . . 5  |-  ( ph  ->  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) )  e. 
U. B  <->  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) )  e.  ( II 
Cn  J )  /\  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) ) ` 
0 )  =  Y  /\  ( ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) ) `
 1 )  =  Y ) ) )
9190adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) )  e.  U. B 
<->  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) )  e.  ( II  Cn  J
)  /\  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) ) `  0 )  =  Y  /\  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  1
)  =  Y ) ) )
9284, 87, 89, 91mpbir3and 1245 . . 3  |-  ( (
ph  /\  x  e.  U. B )  ->  (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) )  e.  U. B
)
934, 69, 70, 71, 92, 73om1addcl 22833 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x )  e.  U. B
)
94 eqid 2622 . . . . . . 7  |-  ( ( 0 [,] 1 )  X.  { ( x `
 1 ) } )  =  ( ( 0 [,] 1 )  X.  { ( x `
 1 ) } )
9581, 94pcorev 22827 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( x ` 
1 ) } ) )
9675, 95syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( x ` 
1 ) } ) )
9786sneqd 4189 . . . . . . 7  |-  ( (
ph  /\  x  e.  U. B )  ->  { ( x `  1 ) }  =  { Y } )
9897xpeq2d 5139 . . . . . 6  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( 0 [,] 1
)  X.  { ( x `  1 ) } )  =  ( ( 0 [,] 1
)  X.  { Y } ) )
9998, 64syl6reqr 2675 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  .0.  =  ( ( 0 [,] 1 )  X. 
{ ( x ` 
1 ) } ) )
10096, 99breqtrrd 4681 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) (  ~=ph  `  J
)  .0.  )
101 brinxp2 5180 . . . 4  |-  ( ( ( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B
) )  .0.  <->  ( (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x )  e.  U. B  /\  .0.  e.  U. B  /\  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) ) ( *p `  J ) x ) (  ~=ph  `  J )  .0.  )
)
10293, 72, 100, 101syl3anbrc 1246 . . 3  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B
) )  .0.  )
10314, 9, 15, 19, 11, 26, 32, 63, 68, 80, 92, 102qusgrp2 17533 . 2  |-  ( ph  ->  ( G  e.  Grp  /\ 
[  .0.  ] ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) )  =  ( 0g `  G ) ) )
104 ecinxp 7822 . . . . 5  |-  ( ( ( (  ~=ph  `  J
) " U. B
)  C_  U. B  /\  .0.  e.  U. B )  ->  [  .0.  ]
(  ~=ph  `  J )  =  [  .0.  ] ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) )
10513, 68, 104syl2anc 693 . . . 4  |-  ( ph  ->  [  .0.  ] ( 
~=ph  `  J )  =  [  .0.  ] ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) )
106105eqeq1d 2624 . . 3  |-  ( ph  ->  ( [  .0.  ]
(  ~=ph  `  J )  =  ( 0g `  G )  <->  [  .0.  ] ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )  =  ( 0g
`  G ) ) )
107106anbi2d 740 . 2  |-  ( ph  ->  ( ( G  e. 
Grp  /\  [  .0.  ] (  ~=ph  `  J )  =  ( 0g `  G ) )  <->  ( G  e.  Grp  /\  [  .0.  ] ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )  =  ( 0g
`  G ) ) ) )
108103, 107mpbird 247 1  |-  ( ph  ->  ( G  e.  Grp  /\ 
[  .0.  ] ( 
~=ph  `  J )  =  ( 0g `  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   "cima 5117   ` cfv 5888  (class class class)co 6650    Er wer 7739   [cec 7740   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   4c4 11072   [,]cicc 12178   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422  TopOnctopon 20715    Cn ccn 21028   IIcii 22678    ~=ph cphtpc 22768   *pcpco 22800    Om1 comi 22801    pi1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-om1 22806  df-pi1 22808
This theorem is referenced by:  pi1grp  22850  pi1id  22851  pi1inv  22852
  Copyright terms: Public domain W3C validator