| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r3al | Structured version Visualization version Unicode version | ||
| Description: Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
| Ref | Expression |
|---|---|
| r3al |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2al 2939 |
. 2
| |
| 2 | 19.21v 1868 |
. . . 4
| |
| 3 | df-3an 1039 |
. . . . . . 7
| |
| 4 | 3 | imbi1i 339 |
. . . . . 6
|
| 5 | impexp 462 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 264 |
. . . . 5
|
| 7 | 6 | albii 1747 |
. . . 4
|
| 8 | df-ral 2917 |
. . . . 5
| |
| 9 | 8 | imbi2i 326 |
. . . 4
|
| 10 | 2, 7, 9 | 3bitr4ri 293 |
. . 3
|
| 11 | 10 | 2albii 1748 |
. 2
|
| 12 | 1, 11 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 df-ral 2917 |
| This theorem is referenced by: pocl 5042 dfwe2 6981 isass 33645 ntrneikb 38392 ntrneixb 38393 |
| Copyright terms: Public domain | W3C validator |