MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbia2 Structured version   Visualization version   Unicode version

Theorem rabbia2 3187
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabbia2.1  |-  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
)
Assertion
Ref Expression
rabbia2  |-  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }

Proof of Theorem rabbia2
StepHypRef Expression
1 rabbia2.1 . . . 4  |-  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
)
21a1i 11 . . 3  |-  ( T. 
->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
32rabbidva2 3186 . 2  |-  ( T. 
->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
43trud 1493 1  |-  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rab 2921
This theorem is referenced by:  finsumvtxdg2ssteplem3  26443  smflim  40985  smflim2  41012  smflimsuplem1  41026  smflimsup  41034  sprvalpwn0  41733
  Copyright terms: Public domain W3C validator