Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem1 Structured version   Visualization version   Unicode version

Theorem smflimsuplem1 41026
Description: If  H converges, the  limsup of  F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem1.z  |-  Z  =  ( ZZ>= `  M )
smflimsuplem1.e  |-  E  =  ( n  e.  Z  |->  { x  e.  |^|_ m  e.  ( ZZ>= `  n
) dom  ( F `  m )  |  sup ( ran  ( m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `  x
) ) ,  RR* ,  <  )  e.  RR } )
smflimsuplem1.h  |-  H  =  ( n  e.  Z  |->  ( x  e.  ( E `  n ) 
|->  sup ( ran  (
m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `
 x ) ) ,  RR* ,  <  )
) )
smflimsuplem1.k  |-  ( ph  ->  K  e.  Z )
Assertion
Ref Expression
smflimsuplem1  |-  ( ph  ->  dom  ( H `  K )  C_  dom  ( F `  K ) )
Distinct variable groups:    n, E, x    m, F, n, x   
n, K, x    n, Z
Allowed substitution hints:    ph( x, m, n)    E( m)    H( x, m, n)    K( m)    M( x, m, n)    Z( x, m)

Proof of Theorem smflimsuplem1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem1.h . . . . 5  |-  H  =  ( n  e.  Z  |->  ( x  e.  ( E `  n ) 
|->  sup ( ran  (
m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `
 x ) ) ,  RR* ,  <  )
) )
2 fveq2 6191 . . . . . . . . . . . 12  |-  ( m  =  j  ->  ( F `  m )  =  ( F `  j ) )
32fveq1d 6193 . . . . . . . . . . 11  |-  ( m  =  j  ->  (
( F `  m
) `  x )  =  ( ( F `
 j ) `  x ) )
43cbvmptv 4750 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  n
)  |->  ( ( F `
 m ) `  x ) )  =  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
)
54rneqi 5352 . . . . . . . . 9  |-  ran  (
m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `
 x ) )  =  ran  ( j  e.  ( ZZ>= `  n
)  |->  ( ( F `
 j ) `  x ) )
65supeq1i 8353 . . . . . . . 8  |-  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( ( F `  m
) `  x )
) ,  RR* ,  <  )  =  sup ( ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )
76mpteq2i 4741 . . . . . . 7  |-  ( x  e.  ( E `  n )  |->  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( ( F `  m
) `  x )
) ,  RR* ,  <  ) )  =  ( x  e.  ( E `  n )  |->  sup ( ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  ) )
87a1i 11 . . . . . 6  |-  ( n  =  K  ->  (
x  e.  ( E `
 n )  |->  sup ( ran  ( m  e.  ( ZZ>= `  n
)  |->  ( ( F `
 m ) `  x ) ) , 
RR* ,  <  ) )  =  ( x  e.  ( E `  n
)  |->  sup ( ran  (
j  e.  ( ZZ>= `  n )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )
) )
9 fveq2 6191 . . . . . . 7  |-  ( n  =  K  ->  ( E `  n )  =  ( E `  K ) )
10 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  K  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  K )
)
1110mpteq1d 4738 . . . . . . . . 9  |-  ( n  =  K  ->  (
j  e.  ( ZZ>= `  n )  |->  ( ( F `  j ) `
 x ) )  =  ( j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `  x
) ) )
1211rneqd 5353 . . . . . . . 8  |-  ( n  =  K  ->  ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
)  =  ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) )
1312supeq1d 8352 . . . . . . 7  |-  ( n  =  K  ->  sup ( ran  ( j  e.  ( ZZ>= `  n )  |->  ( ( F `  j ) `  x
) ) ,  RR* ,  <  )  =  sup ( ran  ( j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `  x
) ) ,  RR* ,  <  ) )
149, 13mpteq12dv 4733 . . . . . 6  |-  ( n  =  K  ->  (
x  e.  ( E `
 n )  |->  sup ( ran  ( j  e.  ( ZZ>= `  n
)  |->  ( ( F `
 j ) `  x ) ) , 
RR* ,  <  ) )  =  ( x  e.  ( E `  K
)  |->  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )
) )
158, 14eqtrd 2656 . . . . 5  |-  ( n  =  K  ->  (
x  e.  ( E `
 n )  |->  sup ( ran  ( m  e.  ( ZZ>= `  n
)  |->  ( ( F `
 m ) `  x ) ) , 
RR* ,  <  ) )  =  ( x  e.  ( E `  K
)  |->  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )
) )
16 smflimsuplem1.k . . . . 5  |-  ( ph  ->  K  e.  Z )
17 fvex 6201 . . . . . . 7  |-  ( E `
 K )  e. 
_V
1817mptex 6486 . . . . . 6  |-  ( x  e.  ( E `  K )  |->  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  ) )  e.  _V
1918a1i 11 . . . . 5  |-  ( ph  ->  ( x  e.  ( E `  K ) 
|->  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )
)  e.  _V )
201, 15, 16, 19fvmptd3 39447 . . . 4  |-  ( ph  ->  ( H `  K
)  =  ( x  e.  ( E `  K )  |->  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  ) ) )
2120dmeqd 5326 . . 3  |-  ( ph  ->  dom  ( H `  K )  =  dom  ( x  e.  ( E `  K )  |->  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )
) )
22 xrltso 11974 . . . . . 6  |-  <  Or  RR*
2322supex 8369 . . . . 5  |-  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  _V
24 eqid 2622 . . . . 5  |-  ( x  e.  ( E `  K )  |->  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  ) )  =  ( x  e.  ( E `  K )  |->  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  ) )
2523, 24dmmpti 6023 . . . 4  |-  dom  (
x  e.  ( E `
 K )  |->  sup ( ran  ( j  e.  ( ZZ>= `  K
)  |->  ( ( F `
 j ) `  x ) ) , 
RR* ,  <  ) )  =  ( E `  K )
2625a1i 11 . . 3  |-  ( ph  ->  dom  ( x  e.  ( E `  K
)  |->  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )
)  =  ( E `
 K ) )
27 smflimsuplem1.e . . . 4  |-  E  =  ( n  e.  Z  |->  { x  e.  |^|_ m  e.  ( ZZ>= `  n
) dom  ( F `  m )  |  sup ( ran  ( m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `  x
) ) ,  RR* ,  <  )  e.  RR } )
282dmeqd 5326 . . . . . . . . . 10  |-  ( m  =  j  ->  dom  ( F `  m )  =  dom  ( F `
 j ) )
2928cbviinv 4560 . . . . . . . . 9  |-  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j
)
3029eleq2i 2693 . . . . . . . 8  |-  ( x  e.  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  <->  x  e.  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j
) )
316eleq1i 2692 . . . . . . . 8  |-  ( sup ( ran  ( m  e.  ( ZZ>= `  n
)  |->  ( ( F `
 m ) `  x ) ) , 
RR* ,  <  )  e.  RR  <->  sup ( ran  (
j  e.  ( ZZ>= `  n )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )  e.  RR )
3230, 31anbi12i 733 . . . . . . 7  |-  ( ( x  e.  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  /\  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( ( F `  m
) `  x )
) ,  RR* ,  <  )  e.  RR )  <->  ( x  e.  |^|_ j  e.  (
ZZ>= `  n ) dom  ( F `  j
)  /\  sup ( ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR ) )
3332rabbia2 3187 . . . . . 6  |-  { x  e.  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  |  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( ( F `  m
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR }
3433a1i 11 . . . . 5  |-  ( n  =  K  ->  { x  e.  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  |  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( ( F `  m
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR } )
3510iineq1d 39267 . . . . . . . 8  |-  ( n  =  K  ->  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j
)  =  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
) )
3635eleq2d 2687 . . . . . . 7  |-  ( n  =  K  ->  (
x  e.  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j
)  <->  x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
) ) )
3713eleq1d 2686 . . . . . . 7  |-  ( n  =  K  ->  ( sup ( ran  ( j  e.  ( ZZ>= `  n
)  |->  ( ( F `
 j ) `  x ) ) , 
RR* ,  <  )  e.  RR  <->  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )  e.  RR ) )
3836, 37anbi12d 747 . . . . . 6  |-  ( n  =  K  ->  (
( x  e.  |^|_ j  e.  ( ZZ>= `  n ) dom  ( F `  j )  /\  sup ( ran  (
j  e.  ( ZZ>= `  n )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )  e.  RR )  <->  ( x  e.  |^|_ j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  /\  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR ) ) )
3938rabbidva2 3186 . . . . 5  |-  ( n  =  K  ->  { x  e.  |^|_ j  e.  (
ZZ>= `  n ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  n )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR } )
4034, 39eqtrd 2656 . . . 4  |-  ( n  =  K  ->  { x  e.  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  |  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( ( F `  m
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR } )
41 eqid 2622 . . . . 5  |-  { x  e.  |^|_ j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR }
42 smflimsuplem1.z . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
4342, 16eluzelz2d 39640 . . . . . . 7  |-  ( ph  ->  K  e.  ZZ )
44 uzid 11702 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  ( ZZ>= `  K )
)
45 ne0i 3921 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  K )  =/=  (/) )
4643, 44, 453syl 18 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  K )  =/=  (/) )
47 fvex 6201 . . . . . . . . 9  |-  ( F `
 j )  e. 
_V
4847dmex 7099 . . . . . . . 8  |-  dom  ( F `  j )  e.  _V
4948rgenw 2924 . . . . . . 7  |-  A. j  e.  ( ZZ>= `  K ) dom  ( F `  j
)  e.  _V
5049a1i 11 . . . . . 6  |-  ( ph  ->  A. j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  e.  _V )
5146, 50iinexd 39318 . . . . 5  |-  ( ph  -> 
|^|_ j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  e.  _V )
5241, 51rabexd 4814 . . . 4  |-  ( ph  ->  { x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j )  |  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )  e.  RR }  e.  _V )
5327, 40, 16, 52fvmptd3 39447 . . 3  |-  ( ph  ->  ( E `  K
)  =  { x  e.  |^|_ j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR } )
5421, 26, 533eqtrd 2660 . 2  |-  ( ph  ->  dom  ( H `  K )  =  {
x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR } )
55 ssrab2 3687 . . . 4  |-  { x  e.  |^|_ j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  |  sup ( ran  ( j  e.  (
ZZ>= `  K )  |->  ( ( F `  j
) `  x )
) ,  RR* ,  <  )  e.  RR }  C_  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j )
5655a1i 11 . . 3  |-  ( ph  ->  { x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j )  |  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )  e.  RR }  C_  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j
) )
5743, 44syl 17 . . . 4  |-  ( ph  ->  K  e.  ( ZZ>= `  K ) )
58 fveq2 6191 . . . . 5  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
5958dmeqd 5326 . . . 4  |-  ( j  =  K  ->  dom  ( F `  j )  =  dom  ( F `
 K ) )
60 ssid 3624 . . . . 5  |-  dom  ( F `  K )  C_ 
dom  ( F `  K )
6160a1i 11 . . . 4  |-  ( ph  ->  dom  ( F `  K )  C_  dom  ( F `  K ) )
6257, 59, 61iinssd 39314 . . 3  |-  ( ph  -> 
|^|_ j  e.  (
ZZ>= `  K ) dom  ( F `  j
)  C_  dom  ( F `
 K ) )
6356, 62sstrd 3613 . 2  |-  ( ph  ->  { x  e.  |^|_ j  e.  ( ZZ>= `  K ) dom  ( F `  j )  |  sup ( ran  (
j  e.  ( ZZ>= `  K )  |->  ( ( F `  j ) `
 x ) ) ,  RR* ,  <  )  e.  RR }  C_  dom  ( F `  K ) )
6454, 63eqsstrd 3639 1  |-  ( ph  ->  dom  ( H `  K )  C_  dom  ( F `  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   |^|_ciin 4521    |-> cmpt 4729   dom cdm 5114   ran crn 5115   ` cfv 5888   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688
This theorem is referenced by:  smflimsuplem4  41029
  Copyright terms: Public domain W3C validator