| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimsuplem1 | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| smflimsuplem1.z |
|
| smflimsuplem1.e |
|
| smflimsuplem1.h |
|
| smflimsuplem1.k |
|
| Ref | Expression |
|---|---|
| smflimsuplem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smflimsuplem1.h |
. . . . 5
| |
| 2 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 3 | 2 | fveq1d 6193 |
. . . . . . . . . . 11
|
| 4 | 3 | cbvmptv 4750 |
. . . . . . . . . 10
|
| 5 | 4 | rneqi 5352 |
. . . . . . . . 9
|
| 6 | 5 | supeq1i 8353 |
. . . . . . . 8
|
| 7 | 6 | mpteq2i 4741 |
. . . . . . 7
|
| 8 | 7 | a1i 11 |
. . . . . 6
|
| 9 | fveq2 6191 |
. . . . . . 7
| |
| 10 | fveq2 6191 |
. . . . . . . . . 10
| |
| 11 | 10 | mpteq1d 4738 |
. . . . . . . . 9
|
| 12 | 11 | rneqd 5353 |
. . . . . . . 8
|
| 13 | 12 | supeq1d 8352 |
. . . . . . 7
|
| 14 | 9, 13 | mpteq12dv 4733 |
. . . . . 6
|
| 15 | 8, 14 | eqtrd 2656 |
. . . . 5
|
| 16 | smflimsuplem1.k |
. . . . 5
| |
| 17 | fvex 6201 |
. . . . . . 7
| |
| 18 | 17 | mptex 6486 |
. . . . . 6
|
| 19 | 18 | a1i 11 |
. . . . 5
|
| 20 | 1, 15, 16, 19 | fvmptd3 39447 |
. . . 4
|
| 21 | 20 | dmeqd 5326 |
. . 3
|
| 22 | xrltso 11974 |
. . . . . 6
| |
| 23 | 22 | supex 8369 |
. . . . 5
|
| 24 | eqid 2622 |
. . . . 5
| |
| 25 | 23, 24 | dmmpti 6023 |
. . . 4
|
| 26 | 25 | a1i 11 |
. . 3
|
| 27 | smflimsuplem1.e |
. . . 4
| |
| 28 | 2 | dmeqd 5326 |
. . . . . . . . . 10
|
| 29 | 28 | cbviinv 4560 |
. . . . . . . . 9
|
| 30 | 29 | eleq2i 2693 |
. . . . . . . 8
|
| 31 | 6 | eleq1i 2692 |
. . . . . . . 8
|
| 32 | 30, 31 | anbi12i 733 |
. . . . . . 7
|
| 33 | 32 | rabbia2 3187 |
. . . . . 6
|
| 34 | 33 | a1i 11 |
. . . . 5
|
| 35 | 10 | iineq1d 39267 |
. . . . . . . 8
|
| 36 | 35 | eleq2d 2687 |
. . . . . . 7
|
| 37 | 13 | eleq1d 2686 |
. . . . . . 7
|
| 38 | 36, 37 | anbi12d 747 |
. . . . . 6
|
| 39 | 38 | rabbidva2 3186 |
. . . . 5
|
| 40 | 34, 39 | eqtrd 2656 |
. . . 4
|
| 41 | eqid 2622 |
. . . . 5
| |
| 42 | smflimsuplem1.z |
. . . . . . . 8
| |
| 43 | 42, 16 | eluzelz2d 39640 |
. . . . . . 7
|
| 44 | uzid 11702 |
. . . . . . 7
| |
| 45 | ne0i 3921 |
. . . . . . 7
| |
| 46 | 43, 44, 45 | 3syl 18 |
. . . . . 6
|
| 47 | fvex 6201 |
. . . . . . . . 9
| |
| 48 | 47 | dmex 7099 |
. . . . . . . 8
|
| 49 | 48 | rgenw 2924 |
. . . . . . 7
|
| 50 | 49 | a1i 11 |
. . . . . 6
|
| 51 | 46, 50 | iinexd 39318 |
. . . . 5
|
| 52 | 41, 51 | rabexd 4814 |
. . . 4
|
| 53 | 27, 40, 16, 52 | fvmptd3 39447 |
. . 3
|
| 54 | 21, 26, 53 | 3eqtrd 2660 |
. 2
|
| 55 | ssrab2 3687 |
. . . 4
| |
| 56 | 55 | a1i 11 |
. . 3
|
| 57 | 43, 44 | syl 17 |
. . . 4
|
| 58 | fveq2 6191 |
. . . . 5
| |
| 59 | 58 | dmeqd 5326 |
. . . 4
|
| 60 | ssid 3624 |
. . . . 5
| |
| 61 | 60 | a1i 11 |
. . . 4
|
| 62 | 57, 59, 61 | iinssd 39314 |
. . 3
|
| 63 | 56, 62 | sstrd 3613 |
. 2
|
| 64 | 54, 63 | eqsstrd 3639 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 |
| This theorem is referenced by: smflimsuplem4 41029 |
| Copyright terms: Public domain | W3C validator |