Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprvalpwn0 Structured version   Visualization version   Unicode version

Theorem sprvalpwn0 41733
Description: The set of all unordered pairs over a given set  V, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprvalpwn0  |-  ( V  e.  W  ->  (Pairs `  V )  =  {
p  e.  ( ~P V  \  { (/) } )  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } } )
Distinct variable groups:    V, a,
b, p    W, a,
b, p

Proof of Theorem sprvalpwn0
StepHypRef Expression
1 sprvalpw 41730 . 2  |-  ( V  e.  W  ->  (Pairs `  V )  =  {
p  e.  ~P V  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } }
)
2 id 22 . . . . . . . . 9  |-  ( p  =  { a ,  b }  ->  p  =  { a ,  b } )
3 vex 3203 . . . . . . . . . . 11  |-  a  e. 
_V
43prnz 4310 . . . . . . . . . 10  |-  { a ,  b }  =/=  (/)
54a1i 11 . . . . . . . . 9  |-  ( p  =  { a ,  b }  ->  { a ,  b }  =/=  (/) )
62, 5eqnetrd 2861 . . . . . . . 8  |-  ( p  =  { a ,  b }  ->  p  =/=  (/) )
76a1i 11 . . . . . . 7  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( p  =  {
a ,  b }  ->  p  =/=  (/) ) )
87rexlimivv 3036 . . . . . 6  |-  ( E. a  e.  V  E. b  e.  V  p  =  { a ,  b }  ->  p  =/=  (/) )
98adantl 482 . . . . 5  |-  ( ( p  e.  ~P V  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } )  ->  p  =/=  (/) )
109pm4.71ri 665 . . . 4  |-  ( ( p  e.  ~P V  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } )  <-> 
( p  =/=  (/)  /\  (
p  e.  ~P V  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) ) )
11 ancom 466 . . . . . 6  |-  ( ( p  =/=  (/)  /\  p  e.  ~P V )  <->  ( p  e.  ~P V  /\  p  =/=  (/) ) )
1211anbi1i 731 . . . . 5  |-  ( ( ( p  =/=  (/)  /\  p  e.  ~P V )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } )  <->  ( (
p  e.  ~P V  /\  p  =/=  (/) )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )
13 anass 681 . . . . 5  |-  ( ( ( p  =/=  (/)  /\  p  e.  ~P V )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } )  <->  ( p  =/=  (/)  /\  ( p  e.  ~P V  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) ) )
14 eldifsn 4317 . . . . . . 7  |-  ( p  e.  ( ~P V  \  { (/) } )  <->  ( p  e.  ~P V  /\  p  =/=  (/) ) )
1514bicomi 214 . . . . . 6  |-  ( ( p  e.  ~P V  /\  p  =/=  (/) )  <->  p  e.  ( ~P V  \  { (/)
} ) )
1615anbi1i 731 . . . . 5  |-  ( ( ( p  e.  ~P V  /\  p  =/=  (/) )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } )  <->  ( p  e.  ( ~P V  \  { (/) } )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )
1712, 13, 163bitr3i 290 . . . 4  |-  ( ( p  =/=  (/)  /\  (
p  e.  ~P V  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )  <->  ( p  e.  ( ~P V  \  { (/) } )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )
1810, 17bitri 264 . . 3  |-  ( ( p  e.  ~P V  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } )  <-> 
( p  e.  ( ~P V  \  { (/)
} )  /\  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )
1918rabbia2 3187 . 2  |-  { p  e.  ~P V  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } }  =  {
p  e.  ( ~P V  \  { (/) } )  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } }
201, 19syl6eq 2672 1  |-  ( V  e.  W  ->  (Pairs `  V )  =  {
p  e.  ( ~P V  \  { (/) } )  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   ` cfv 5888  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-spr 41728
This theorem is referenced by:  sprvalpwle2  41739
  Copyright terms: Public domain W3C validator