| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smflim2 | Structured version Visualization version Unicode version | ||
| Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO this has less distinct variable restrictions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| smflim2.n |
|
| smflim2.x |
|
| smflim2.m |
|
| smflim2.z |
|
| smflim2.s |
|
| smflim2.f |
|
| smflim2.d |
|
| smflim2.g |
|
| Ref | Expression |
|---|---|
| smflim2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2764 |
. 2
| |
| 2 | nfcv 2764 |
. 2
| |
| 3 | smflim2.m |
. 2
| |
| 4 | smflim2.z |
. 2
| |
| 5 | smflim2.s |
. 2
| |
| 6 | smflim2.f |
. 2
| |
| 7 | smflim2.d |
. . 3
| |
| 8 | nfcv 2764 |
. . . . 5
| |
| 9 | nfcv 2764 |
. . . . . 6
| |
| 10 | smflim2.x |
. . . . . . . 8
| |
| 11 | nfcv 2764 |
. . . . . . . 8
| |
| 12 | 10, 11 | nffv 6198 |
. . . . . . 7
|
| 13 | 12 | nfdm 5367 |
. . . . . 6
|
| 14 | 9, 13 | nfiin 4549 |
. . . . 5
|
| 15 | 8, 14 | nfiun 4548 |
. . . 4
|
| 16 | nfcv 2764 |
. . . 4
| |
| 17 | nfv 1843 |
. . . 4
| |
| 18 | nfcv 2764 |
. . . . . . 7
| |
| 19 | smflim2.n |
. . . . . . . . 9
| |
| 20 | nfcv 2764 |
. . . . . . . . 9
| |
| 21 | 19, 20 | nffv 6198 |
. . . . . . . 8
|
| 22 | nfcv 2764 |
. . . . . . . 8
| |
| 23 | 21, 22 | nffv 6198 |
. . . . . . 7
|
| 24 | fveq2 6191 |
. . . . . . . 8
| |
| 25 | 24 | fveq1d 6193 |
. . . . . . 7
|
| 26 | 18, 23, 25 | cbvmpt 4749 |
. . . . . 6
|
| 27 | nfcv 2764 |
. . . . . . . . 9
| |
| 28 | 10, 27 | nffv 6198 |
. . . . . . . 8
|
| 29 | nfcv 2764 |
. . . . . . . 8
| |
| 30 | 28, 29 | nffv 6198 |
. . . . . . 7
|
| 31 | 8, 30 | nfmpt 4746 |
. . . . . 6
|
| 32 | 26, 31 | nfcxfr 2762 |
. . . . 5
|
| 33 | nfcv 2764 |
. . . . 5
| |
| 34 | 32, 33 | nfel 2777 |
. . . 4
|
| 35 | fveq2 6191 |
. . . . . 6
| |
| 36 | 35 | mpteq2dv 4745 |
. . . . 5
|
| 37 | 36 | eleq1d 2686 |
. . . 4
|
| 38 | 15, 16, 17, 34, 37 | cbvrab 3198 |
. . 3
|
| 39 | fveq2 6191 |
. . . . . . . . 9
| |
| 40 | 39 | iineq1d 39267 |
. . . . . . . 8
|
| 41 | nfcv 2764 |
. . . . . . . . . 10
| |
| 42 | 21 | nfdm 5367 |
. . . . . . . . . 10
|
| 43 | 24 | dmeqd 5326 |
. . . . . . . . . 10
|
| 44 | 41, 42, 43 | cbviin 4558 |
. . . . . . . . 9
|
| 45 | 44 | a1i 11 |
. . . . . . . 8
|
| 46 | 40, 45 | eqtrd 2656 |
. . . . . . 7
|
| 47 | 46 | cbviunv 4559 |
. . . . . 6
|
| 48 | 47 | eleq2i 2693 |
. . . . 5
|
| 49 | 26 | eleq1i 2692 |
. . . . 5
|
| 50 | 48, 49 | anbi12i 733 |
. . . 4
|
| 51 | 50 | rabbia2 3187 |
. . 3
|
| 52 | 7, 38, 51 | 3eqtri 2648 |
. 2
|
| 53 | smflim2.g |
. . 3
| |
| 54 | nfrab1 3122 |
. . . . 5
| |
| 55 | 7, 54 | nfcxfr 2762 |
. . . 4
|
| 56 | nfcv 2764 |
. . . 4
| |
| 57 | nfcv 2764 |
. . . 4
| |
| 58 | nfcv 2764 |
. . . . 5
| |
| 59 | 58, 31 | nffv 6198 |
. . . 4
|
| 60 | 26 | a1i 11 |
. . . . . 6
|
| 61 | 36, 60 | eqtrd 2656 |
. . . . 5
|
| 62 | 61 | fveq2d 6195 |
. . . 4
|
| 63 | 55, 56, 57, 59, 62 | cbvmptf 4748 |
. . 3
|
| 64 | 53, 63 | eqtri 2644 |
. 2
|
| 65 | 1, 2, 3, 4, 5, 6, 52, 64 | smflim 40985 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-ac 8939 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ico 12181 df-fl 12593 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-rest 16083 df-salg 40529 df-smblfn 40910 |
| This theorem is referenced by: smflimmpt 41016 |
| Copyright terms: Public domain | W3C validator |