Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim2 Structured version   Visualization version   Unicode version

Theorem smflim2 41012
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO this has less distinct variable restrictions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflim2.n  |-  F/_ m F
smflim2.x  |-  F/_ x F
smflim2.m  |-  ( ph  ->  M  e.  ZZ )
smflim2.z  |-  Z  =  ( ZZ>= `  M )
smflim2.s  |-  ( ph  ->  S  e. SAlg )
smflim2.f  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
smflim2.d  |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) )  e.  dom  ~~>  }
smflim2.g  |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
Assertion
Ref Expression
smflim2  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Distinct variable groups:    n, F    m, Z, n, x
Allowed substitution hints:    ph( x, m, n)    D( x, m, n)    S( x, m, n)    F( x, m)    G( x, m, n)    M( x, m, n)

Proof of Theorem smflim2
Dummy variables  k 
y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . 2  |-  F/_ j F
2 nfcv 2764 . 2  |-  F/_ y F
3 smflim2.m . 2  |-  ( ph  ->  M  e.  ZZ )
4 smflim2.z . 2  |-  Z  =  ( ZZ>= `  M )
5 smflim2.s . 2  |-  ( ph  ->  S  e. SAlg )
6 smflim2.f . 2  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
7 smflim2.d . . 3  |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) )  e.  dom  ~~>  }
8 nfcv 2764 . . . . 5  |-  F/_ x Z
9 nfcv 2764 . . . . . 6  |-  F/_ x
( ZZ>= `  n )
10 smflim2.x . . . . . . . 8  |-  F/_ x F
11 nfcv 2764 . . . . . . . 8  |-  F/_ x m
1210, 11nffv 6198 . . . . . . 7  |-  F/_ x
( F `  m
)
1312nfdm 5367 . . . . . 6  |-  F/_ x dom  ( F `  m
)
149, 13nfiin 4549 . . . . 5  |-  F/_ x |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )
158, 14nfiun 4548 . . . 4  |-  F/_ x U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )
16 nfcv 2764 . . . 4  |-  F/_ y U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )
17 nfv 1843 . . . 4  |-  F/ y ( m  e.  Z  |->  ( ( F `  m ) `  x
) )  e.  dom  ~~>
18 nfcv 2764 . . . . . . 7  |-  F/_ j
( ( F `  m ) `  y
)
19 smflim2.n . . . . . . . . 9  |-  F/_ m F
20 nfcv 2764 . . . . . . . . 9  |-  F/_ m
j
2119, 20nffv 6198 . . . . . . . 8  |-  F/_ m
( F `  j
)
22 nfcv 2764 . . . . . . . 8  |-  F/_ m
y
2321, 22nffv 6198 . . . . . . 7  |-  F/_ m
( ( F `  j ) `  y
)
24 fveq2 6191 . . . . . . . 8  |-  ( m  =  j  ->  ( F `  m )  =  ( F `  j ) )
2524fveq1d 6193 . . . . . . 7  |-  ( m  =  j  ->  (
( F `  m
) `  y )  =  ( ( F `
 j ) `  y ) )
2618, 23, 25cbvmpt 4749 . . . . . 6  |-  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) )  =  ( j  e.  Z  |->  ( ( F `
 j ) `  y ) )
27 nfcv 2764 . . . . . . . . 9  |-  F/_ x
j
2810, 27nffv 6198 . . . . . . . 8  |-  F/_ x
( F `  j
)
29 nfcv 2764 . . . . . . . 8  |-  F/_ x
y
3028, 29nffv 6198 . . . . . . 7  |-  F/_ x
( ( F `  j ) `  y
)
318, 30nfmpt 4746 . . . . . 6  |-  F/_ x
( j  e.  Z  |->  ( ( F `  j ) `  y
) )
3226, 31nfcxfr 2762 . . . . 5  |-  F/_ x
( m  e.  Z  |->  ( ( F `  m ) `  y
) )
33 nfcv 2764 . . . . 5  |-  F/_ x dom 
~~>
3432, 33nfel 2777 . . . 4  |-  F/ x
( m  e.  Z  |->  ( ( F `  m ) `  y
) )  e.  dom  ~~>
35 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (
( F `  m
) `  x )  =  ( ( F `
 m ) `  y ) )
3635mpteq2dv 4745 . . . . 5  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  x )
)  =  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) )
3736eleq1d 2686 . . . 4  |-  ( x  =  y  ->  (
( m  e.  Z  |->  ( ( F `  m ) `  x
) )  e.  dom  ~~>  <->  (
m  e.  Z  |->  ( ( F `  m
) `  y )
)  e.  dom  ~~>  ) )
3815, 16, 17, 34, 37cbvrab 3198 . . 3  |-  { x  e.  U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  ( m  e.  Z  |->  ( ( F `
 m ) `  x ) )  e. 
dom 
~~>  }  =  { y  e.  U_ n  e.  Z  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  |  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) )  e.  dom  ~~>  }
39 fveq2 6191 . . . . . . . . 9  |-  ( n  =  k  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  k )
)
4039iineq1d 39267 . . . . . . . 8  |-  ( n  =  k  ->  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ m  e.  ( ZZ>= `  k ) dom  ( F `  m
) )
41 nfcv 2764 . . . . . . . . . 10  |-  F/_ j dom  ( F `  m
)
4221nfdm 5367 . . . . . . . . . 10  |-  F/_ m dom  ( F `  j
)
4324dmeqd 5326 . . . . . . . . . 10  |-  ( m  =  j  ->  dom  ( F `  m )  =  dom  ( F `
 j ) )
4441, 42, 43cbviin 4558 . . . . . . . . 9  |-  |^|_ m  e.  ( ZZ>= `  k ) dom  ( F `  m
)  =  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
)
4544a1i 11 . . . . . . . 8  |-  ( n  =  k  ->  |^|_ m  e.  ( ZZ>= `  k ) dom  ( F `  m
)  =  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
) )
4640, 45eqtrd 2656 . . . . . . 7  |-  ( n  =  k  ->  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
) )
4746cbviunv 4559 . . . . . 6  |-  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  U_ k  e.  Z  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
)
4847eleq2i 2693 . . . . 5  |-  ( y  e.  U_ n  e.  Z  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  <->  y  e.  U_ k  e.  Z  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
) )
4926eleq1i 2692 . . . . 5  |-  ( ( m  e.  Z  |->  ( ( F `  m
) `  y )
)  e.  dom  ~~>  <->  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) )  e.  dom  ~~>  )
5048, 49anbi12i 733 . . . 4  |-  ( ( y  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  /\  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) )  e.  dom  ~~>  )  <->  ( y  e.  U_ k  e.  Z  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j )  /\  ( j  e.  Z  |->  ( ( F `  j ) `  y
) )  e.  dom  ~~>  ) )
5150rabbia2 3187 . . 3  |-  { y  e.  U_ n  e.  Z  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  |  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) )  e.  dom  ~~>  }  =  { y  e.  U_ k  e.  Z  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
)  |  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) )  e.  dom  ~~>  }
527, 38, 513eqtri 2648 . 2  |-  D  =  { y  e.  U_ k  e.  Z  |^|_ j  e.  ( ZZ>= `  k ) dom  ( F `  j
)  |  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) )  e.  dom  ~~>  }
53 smflim2.g . . 3  |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
54 nfrab1 3122 . . . . 5  |-  F/_ x { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) )  e.  dom  ~~>  }
557, 54nfcxfr 2762 . . . 4  |-  F/_ x D
56 nfcv 2764 . . . 4  |-  F/_ y D
57 nfcv 2764 . . . 4  |-  F/_ y
(  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )
58 nfcv 2764 . . . . 5  |-  F/_ x  ~~>
5958, 31nffv 6198 . . . 4  |-  F/_ x
(  ~~>  `  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) ) )
6026a1i 11 . . . . . 6  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  y )
)  =  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) ) )
6136, 60eqtrd 2656 . . . . 5  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  x )
)  =  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) ) )
6261fveq2d 6195 . . . 4  |-  ( x  =  y  ->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  =  (  ~~>  `  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) ) ) )
6355, 56, 57, 59, 62cbvmptf 4748 . . 3  |-  ( x  e.  D  |->  (  ~~>  `  (
m  e.  Z  |->  ( ( F `  m
) `  x )
) ) )  =  ( y  e.  D  |->  (  ~~>  `  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) ) ) )
6453, 63eqtri 2644 . 2  |-  G  =  ( y  e.  D  |->  (  ~~>  `  ( j  e.  Z  |->  ( ( F `  j ) `
 y ) ) ) )
651, 2, 3, 4, 5, 6, 52, 64smflim 40985 1  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751   {crab 2916   U_ciun 4520   |^|_ciin 4521    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  smflimmpt  41016
  Copyright terms: Public domain W3C validator