Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsup Structured version   Visualization version   Unicode version

Theorem smflimsup 41034
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsup.n  |-  F/_ m F
smflimsup.x  |-  F/_ x F
smflimsup.m  |-  ( ph  ->  M  e.  ZZ )
smflimsup.z  |-  Z  =  ( ZZ>= `  M )
smflimsup.s  |-  ( ph  ->  S  e. SAlg )
smflimsup.f  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
smflimsup.d  |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
smflimsup.g  |-  G  =  ( x  e.  D  |->  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
Assertion
Ref Expression
smflimsup  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Distinct variable groups:    n, F    x, Z, m    n, Z, m    x, m
Allowed substitution hints:    ph( x, m, n)    D( x, m, n)    S( x, m, n)    F( x, m)    G( x, m, n)    M( x, m, n)

Proof of Theorem smflimsup
Dummy variables  k 
j  q  w  i  l  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsup.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 smflimsup.z . 2  |-  Z  =  ( ZZ>= `  M )
3 smflimsup.s . 2  |-  ( ph  ->  S  e. SAlg )
4 smflimsup.f . 2  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
5 smflimsup.d . . 3  |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
6 fveq2 6191 . . . . . . . . 9  |-  ( n  =  j  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  j )
)
76iineq1d 39267 . . . . . . . 8  |-  ( n  =  j  ->  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ m  e.  ( ZZ>= `  j ) dom  ( F `  m
) )
8 nfcv 2764 . . . . . . . . . 10  |-  F/_ q dom  ( F `  m
)
9 smflimsup.n . . . . . . . . . . . 12  |-  F/_ m F
10 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ m
q
119, 10nffv 6198 . . . . . . . . . . 11  |-  F/_ m
( F `  q
)
1211nfdm 5367 . . . . . . . . . 10  |-  F/_ m dom  ( F `  q
)
13 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  q  ->  ( F `  m )  =  ( F `  q ) )
1413dmeqd 5326 . . . . . . . . . 10  |-  ( m  =  q  ->  dom  ( F `  m )  =  dom  ( F `
 q ) )
158, 12, 14cbviin 4558 . . . . . . . . 9  |-  |^|_ m  e.  ( ZZ>= `  j ) dom  ( F `  m
)  =  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q
)
1615a1i 11 . . . . . . . 8  |-  ( n  =  j  ->  |^|_ m  e.  ( ZZ>= `  j ) dom  ( F `  m
)  =  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q
) )
177, 16eqtrd 2656 . . . . . . 7  |-  ( n  =  j  ->  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q
) )
1817cbviunv 4559 . . . . . 6  |-  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q
)
1918eleq2i 2693 . . . . 5  |-  ( x  e.  U_ n  e.  Z  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  <->  x  e.  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q
) )
20 nfcv 2764 . . . . . . . 8  |-  F/_ q
( ( F `  m ) `  x
)
21 nfcv 2764 . . . . . . . . 9  |-  F/_ m x
2211, 21nffv 6198 . . . . . . . 8  |-  F/_ m
( ( F `  q ) `  x
)
2313fveq1d 6193 . . . . . . . 8  |-  ( m  =  q  ->  (
( F `  m
) `  x )  =  ( ( F `
 q ) `  x ) )
2420, 22, 23cbvmpt 4749 . . . . . . 7  |-  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) )  =  ( q  e.  Z  |->  ( ( F `
 q ) `  x ) )
2524fveq2i 6194 . . . . . 6  |-  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  =  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 x ) ) )
2625eleq1i 2692 . . . . 5  |-  ( (
limsup `  ( m  e.  Z  |->  ( ( F `
 m ) `  x ) ) )  e.  RR  <->  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `  x
) ) )  e.  RR )
2719, 26anbi12i 733 . . . 4  |-  ( ( x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  /\  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR )  <->  ( x  e.  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )  /\  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 x ) ) )  e.  RR ) )
2827rabbia2 3187 . . 3  |-  { x  e.  U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  ( limsup `  (
m  e.  Z  |->  ( ( F `  m
) `  x )
) )  e.  RR }  =  { x  e.  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )  |  ( limsup `  (
q  e.  Z  |->  ( ( F `  q
) `  x )
) )  e.  RR }
29 nfcv 2764 . . . . 5  |-  F/_ x Z
30 nfcv 2764 . . . . . 6  |-  F/_ x
( ZZ>= `  j )
31 smflimsup.x . . . . . . . 8  |-  F/_ x F
32 nfcv 2764 . . . . . . . 8  |-  F/_ x
q
3331, 32nffv 6198 . . . . . . 7  |-  F/_ x
( F `  q
)
3433nfdm 5367 . . . . . 6  |-  F/_ x dom  ( F `  q
)
3530, 34nfiin 4549 . . . . 5  |-  F/_ x |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )
3629, 35nfiun 4548 . . . 4  |-  F/_ x U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )
37 nfcv 2764 . . . 4  |-  F/_ w U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )
38 nfv 1843 . . . 4  |-  F/ w
( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 x ) ) )  e.  RR
39 nfcv 2764 . . . . . 6  |-  F/_ x limsup
40 nfcv 2764 . . . . . . . 8  |-  F/_ x w
4133, 40nffv 6198 . . . . . . 7  |-  F/_ x
( ( F `  q ) `  w
)
4229, 41nfmpt 4746 . . . . . 6  |-  F/_ x
( q  e.  Z  |->  ( ( F `  q ) `  w
) )
4339, 42nffv 6198 . . . . 5  |-  F/_ x
( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 w ) ) )
44 nfcv 2764 . . . . 5  |-  F/_ x RR
4543, 44nfel 2777 . . . 4  |-  F/ x
( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 w ) ) )  e.  RR
46 fveq2 6191 . . . . . . 7  |-  ( x  =  w  ->  (
( F `  q
) `  x )  =  ( ( F `
 q ) `  w ) )
4746mpteq2dv 4745 . . . . . 6  |-  ( x  =  w  ->  (
q  e.  Z  |->  ( ( F `  q
) `  x )
)  =  ( q  e.  Z  |->  ( ( F `  q ) `
 w ) ) )
4847fveq2d 6195 . . . . 5  |-  ( x  =  w  ->  ( limsup `
 ( q  e.  Z  |->  ( ( F `
 q ) `  x ) ) )  =  ( limsup `  (
q  e.  Z  |->  ( ( F `  q
) `  w )
) ) )
4948eleq1d 2686 . . . 4  |-  ( x  =  w  ->  (
( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 x ) ) )  e.  RR  <->  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `  w
) ) )  e.  RR ) )
5036, 37, 38, 45, 49cbvrab 3198 . . 3  |-  { x  e.  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )  |  ( limsup `  (
q  e.  Z  |->  ( ( F `  q
) `  x )
) )  e.  RR }  =  { w  e.  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q )  |  ( limsup `  (
q  e.  Z  |->  ( ( F `  q
) `  w )
) )  e.  RR }
515, 28, 503eqtri 2648 . 2  |-  D  =  { w  e.  U_ j  e.  Z  |^|_ q  e.  ( ZZ>= `  j ) dom  ( F `  q
)  |  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `  w
) ) )  e.  RR }
52 smflimsup.g . . 3  |-  G  =  ( x  e.  D  |->  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
5325mpteq2i 4741 . . 3  |-  ( x  e.  D  |->  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) ) )  =  ( x  e.  D  |->  ( limsup `  (
q  e.  Z  |->  ( ( F `  q
) `  x )
) ) )
54 nfrab1 3122 . . . . 5  |-  F/_ x { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
555, 54nfcxfr 2762 . . . 4  |-  F/_ x D
56 nfcv 2764 . . . 4  |-  F/_ w D
57 nfcv 2764 . . . 4  |-  F/_ w
( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 x ) ) )
5855, 56, 57, 43, 48cbvmptf 4748 . . 3  |-  ( x  e.  D  |->  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `  x
) ) ) )  =  ( w  e.  D  |->  ( limsup `  (
q  e.  Z  |->  ( ( F `  q
) `  w )
) ) )
5952, 53, 583eqtri 2648 . 2  |-  G  =  ( w  e.  D  |->  ( limsup `  ( q  e.  Z  |->  ( ( F `  q ) `
 w ) ) ) )
60 nfcv 2764 . . . . . . 7  |-  F/_ x
( ZZ>= `  i )
6160, 34nfiin 4549 . . . . . 6  |-  F/_ x |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q )
62 nfcv 2764 . . . . . 6  |-  F/_ w |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q )
63 nfv 1843 . . . . . 6  |-  F/ w sup ( ran  ( q  e.  ( ZZ>= `  i
)  |->  ( ( F `
 q ) `  x ) ) , 
RR* ,  <  )  e.  RR
6460, 41nfmpt 4746 . . . . . . . . 9  |-  F/_ x
( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  w )
)
6564nfrn 5368 . . . . . . . 8  |-  F/_ x ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  w )
)
66 nfcv 2764 . . . . . . . 8  |-  F/_ x RR*
67 nfcv 2764 . . . . . . . 8  |-  F/_ x  <
6865, 66, 67nfsup 8357 . . . . . . 7  |-  F/_ x sup ( ran  ( q  e.  ( ZZ>= `  i
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  )
6968, 44nfel 2777 . . . . . 6  |-  F/ x sup ( ran  ( q  e.  ( ZZ>= `  i
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  )  e.  RR
7046mpteq2dv 4745 . . . . . . . . 9  |-  ( x  =  w  ->  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 x ) )  =  ( q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `  w
) ) )
7170rneqd 5353 . . . . . . . 8  |-  ( x  =  w  ->  ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
)  =  ran  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 w ) ) )
7271supeq1d 8352 . . . . . . 7  |-  ( x  =  w  ->  sup ( ran  ( q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `  x
) ) ,  RR* ,  <  )  =  sup ( ran  ( q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `  w
) ) ,  RR* ,  <  ) )
7372eleq1d 2686 . . . . . 6  |-  ( x  =  w  ->  ( sup ( ran  ( q  e.  ( ZZ>= `  i
)  |->  ( ( F `
 q ) `  x ) ) , 
RR* ,  <  )  e.  RR  <->  sup ( ran  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 w ) ) ,  RR* ,  <  )  e.  RR ) )
7461, 62, 63, 69, 73cbvrab 3198 . . . . 5  |-  { x  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { w  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR }
7574a1i 11 . . . 4  |-  ( i  =  k  ->  { x  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { w  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR } )
76 fveq2 6191 . . . . . . . 8  |-  ( i  =  k  ->  ( ZZ>=
`  i )  =  ( ZZ>= `  k )
)
7776iineq1d 39267 . . . . . . 7  |-  ( i  =  k  ->  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)  =  |^|_ q  e.  ( ZZ>= `  k ) dom  ( F `  q
) )
7877eleq2d 2687 . . . . . 6  |-  ( i  =  k  ->  (
w  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)  <->  w  e.  |^|_ q  e.  ( ZZ>= `  k ) dom  ( F `  q
) ) )
7976mpteq1d 4738 . . . . . . . . 9  |-  ( i  =  k  ->  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 w ) )  =  ( q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `  w
) ) )
8079rneqd 5353 . . . . . . . 8  |-  ( i  =  k  ->  ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  w )
)  =  ran  (
q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `
 w ) ) )
8180supeq1d 8352 . . . . . . 7  |-  ( i  =  k  ->  sup ( ran  ( q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `  w
) ) ,  RR* ,  <  )  =  sup ( ran  ( q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `  w
) ) ,  RR* ,  <  ) )
8281eleq1d 2686 . . . . . 6  |-  ( i  =  k  ->  ( sup ( ran  ( q  e.  ( ZZ>= `  i
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  )  e.  RR  <->  sup ( ran  (
q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `
 w ) ) ,  RR* ,  <  )  e.  RR ) )
8378, 82anbi12d 747 . . . . 5  |-  ( i  =  k  ->  (
( w  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q )  /\  sup ( ran  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 w ) ) ,  RR* ,  <  )  e.  RR )  <->  ( w  e.  |^|_ q  e.  (
ZZ>= `  k ) dom  ( F `  q
)  /\  sup ( ran  ( q  e.  (
ZZ>= `  k )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR ) ) )
8483rabbidva2 3186 . . . 4  |-  ( i  =  k  ->  { w  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR }  =  { w  e.  |^|_ q  e.  ( ZZ>= `  k ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  k )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR } )
8575, 84eqtrd 2656 . . 3  |-  ( i  =  k  ->  { x  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { w  e.  |^|_ q  e.  ( ZZ>= `  k ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  k )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR } )
8685cbvmptv 4750 . 2  |-  ( i  e.  Z  |->  { x  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } )  =  ( k  e.  Z  |->  { w  e. 
|^|_ q  e.  (
ZZ>= `  k ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  k )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )  e.  RR } )
87 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  w  ->  (
( F `  p
) `  y )  =  ( ( F `
 p ) `  w ) )
8887mpteq2dv 4745 . . . . . . . . 9  |-  ( y  =  w  ->  (
p  e.  ( ZZ>= `  l )  |->  ( ( F `  p ) `
 y ) )  =  ( p  e.  ( ZZ>= `  l )  |->  ( ( F `  p ) `  w
) ) )
8988rneqd 5353 . . . . . . . 8  |-  ( y  =  w  ->  ran  ( p  e.  ( ZZ>=
`  l )  |->  ( ( F `  p
) `  y )
)  =  ran  (
p  e.  ( ZZ>= `  l )  |->  ( ( F `  p ) `
 w ) ) )
9089supeq1d 8352 . . . . . . 7  |-  ( y  =  w  ->  sup ( ran  ( p  e.  ( ZZ>= `  l )  |->  ( ( F `  p ) `  y
) ) ,  RR* ,  <  )  =  sup ( ran  ( p  e.  ( ZZ>= `  l )  |->  ( ( F `  p ) `  w
) ) ,  RR* ,  <  ) )
9190cbvmptv 4750 . . . . . 6  |-  ( y  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  y ) ) , 
RR* ,  <  ) )  =  ( w  e.  ( ( i  e.  Z  |->  { x  e. 
|^|_ p  e.  ( ZZ>=
`  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  w ) ) , 
RR* ,  <  ) )
92 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( p  =  q  ->  ( F `  p )  =  ( F `  q ) )
9392dmeqd 5326 . . . . . . . . . . . . 13  |-  ( p  =  q  ->  dom  ( F `  p )  =  dom  ( F `
 q ) )
9493cbviinv 4560 . . . . . . . . . . . 12  |-  |^|_ p  e.  ( ZZ>= `  i ) dom  ( F `  p
)  =  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)
9594eleq2i 2693 . . . . . . . . . . 11  |-  ( x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  <->  x  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
) )
96 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ q
( ( F `  p ) `  x
)
97 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ p
( F `  q
)
98 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ p x
9997, 98nffv 6198 . . . . . . . . . . . . . . 15  |-  F/_ p
( ( F `  q ) `  x
)
10092fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( p  =  q  ->  (
( F `  p
) `  x )  =  ( ( F `
 q ) `  x ) )
10196, 99, 100cbvmpt 4749 . . . . . . . . . . . . . 14  |-  ( p  e.  ( ZZ>= `  i
)  |->  ( ( F `
 p ) `  x ) )  =  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
)
102101rneqi 5352 . . . . . . . . . . . . 13  |-  ran  (
p  e.  ( ZZ>= `  i )  |->  ( ( F `  p ) `
 x ) )  =  ran  ( q  e.  ( ZZ>= `  i
)  |->  ( ( F `
 q ) `  x ) )
103102supeq1i 8353 . . . . . . . . . . . 12  |-  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  =  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )
104103eleq1i 2692 . . . . . . . . . . 11  |-  ( sup ( ran  ( p  e.  ( ZZ>= `  i
)  |->  ( ( F `
 p ) `  x ) ) , 
RR* ,  <  )  e.  RR  <->  sup ( ran  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 x ) ) ,  RR* ,  <  )  e.  RR )
10595, 104anbi12i 733 . . . . . . . . . 10  |-  ( ( x  e.  |^|_ p  e.  ( ZZ>= `  i ) dom  ( F `  p
)  /\  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR )  <->  ( x  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  /\  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR ) )
106105rabbia2 3187 . . . . . . . . 9  |-  { x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR }
107106mpteq2i 4741 . . . . . . . 8  |-  ( i  e.  Z  |->  { x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } )  =  ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } )
108107fveq1i 6192 . . . . . . 7  |-  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  ( ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  =  ( ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )
10992fveq1d 6193 . . . . . . . . . 10  |-  ( p  =  q  ->  (
( F `  p
) `  w )  =  ( ( F `
 q ) `  w ) )
110109cbvmptv 4750 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  w ) )  =  ( q  e.  (
ZZ>= `  l )  |->  ( ( F `  q
) `  w )
)
111110rneqi 5352 . . . . . . . 8  |-  ran  (
p  e.  ( ZZ>= `  l )  |->  ( ( F `  p ) `
 w ) )  =  ran  ( q  e.  ( ZZ>= `  l
)  |->  ( ( F `
 q ) `  w ) )
112111supeq1i 8353 . . . . . . 7  |-  sup ( ran  ( p  e.  (
ZZ>= `  l )  |->  ( ( F `  p
) `  w )
) ,  RR* ,  <  )  =  sup ( ran  ( q  e.  (
ZZ>= `  l )  |->  ( ( F `  q
) `  w )
) ,  RR* ,  <  )
113108, 112mpteq12i 4742 . . . . . 6  |-  ( w  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  w ) ) , 
RR* ,  <  ) )  =  ( w  e.  ( ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( q  e.  ( ZZ>= `  l
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) )
11491, 113eqtri 2644 . . . . 5  |-  ( y  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  y ) ) , 
RR* ,  <  ) )  =  ( w  e.  ( ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( q  e.  ( ZZ>= `  l
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) )
115114a1i 11 . . . 4  |-  ( l  =  k  ->  (
y  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  ( ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  y ) ) , 
RR* ,  <  ) )  =  ( w  e.  ( ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( q  e.  ( ZZ>= `  l
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) ) )
116 fveq2 6191 . . . . 5  |-  ( l  =  k  ->  (
( i  e.  Z  |->  { x  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q )  |  sup ( ran  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 x ) ) ,  RR* ,  <  )  e.  RR } ) `  l )  =  ( ( i  e.  Z  |->  { x  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q )  |  sup ( ran  (
q  e.  ( ZZ>= `  i )  |->  ( ( F `  q ) `
 x ) ) ,  RR* ,  <  )  e.  RR } ) `  k ) )
117 fveq2 6191 . . . . . . . 8  |-  ( l  =  k  ->  ( ZZ>=
`  l )  =  ( ZZ>= `  k )
)
118117mpteq1d 4738 . . . . . . 7  |-  ( l  =  k  ->  (
q  e.  ( ZZ>= `  l )  |->  ( ( F `  q ) `
 w ) )  =  ( q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `  w
) ) )
119118rneqd 5353 . . . . . 6  |-  ( l  =  k  ->  ran  ( q  e.  (
ZZ>= `  l )  |->  ( ( F `  q
) `  w )
)  =  ran  (
q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `
 w ) ) )
120119supeq1d 8352 . . . . 5  |-  ( l  =  k  ->  sup ( ran  ( q  e.  ( ZZ>= `  l )  |->  ( ( F `  q ) `  w
) ) ,  RR* ,  <  )  =  sup ( ran  ( q  e.  ( ZZ>= `  k )  |->  ( ( F `  q ) `  w
) ) ,  RR* ,  <  ) )
121116, 120mpteq12dv 4733 . . . 4  |-  ( l  =  k  ->  (
w  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ q  e.  ( ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( q  e.  ( ZZ>= `  l
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) )  =  ( w  e.  ( ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 k )  |->  sup ( ran  ( q  e.  ( ZZ>= `  k
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) ) )
122115, 121eqtrd 2656 . . 3  |-  ( l  =  k  ->  (
y  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  ( ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  y ) ) , 
RR* ,  <  ) )  =  ( w  e.  ( ( i  e.  Z  |->  { x  e. 
|^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 k )  |->  sup ( ran  ( q  e.  ( ZZ>= `  k
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) ) )
123122cbvmptv 4750 . 2  |-  ( l  e.  Z  |->  ( y  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ p  e.  (
ZZ>= `  i ) dom  ( F `  p
)  |  sup ( ran  ( p  e.  (
ZZ>= `  i )  |->  ( ( F `  p
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 l )  |->  sup ( ran  ( p  e.  ( ZZ>= `  l
)  |->  ( ( F `
 p ) `  y ) ) , 
RR* ,  <  ) ) )  =  ( k  e.  Z  |->  ( w  e.  ( ( i  e.  Z  |->  { x  e.  |^|_ q  e.  (
ZZ>= `  i ) dom  ( F `  q
)  |  sup ( ran  ( q  e.  (
ZZ>= `  i )  |->  ( ( F `  q
) `  x )
) ,  RR* ,  <  )  e.  RR } ) `
 k )  |->  sup ( ran  ( q  e.  ( ZZ>= `  k
)  |->  ( ( F `
 q ) `  w ) ) , 
RR* ,  <  ) ) )
1241, 2, 3, 4, 51, 59, 86, 123smflimsuplem8 41033 1  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751   {crab 2916   U_ciun 4520   |^|_ciin 4521    |-> cmpt 4729   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ioc 12180  df-ico 12181  df-fz 12327  df-fl 12593  df-ceil 12594  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smflimsupmpt  41035
  Copyright terms: Public domain W3C validator