| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raltpd | Structured version Visualization version Unicode version | ||
| Description: Convert a quantification over a triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
| Ref | Expression |
|---|---|
| ralprd.1 |
|
| ralprd.2 |
|
| raltpd.3 |
|
| ralprd.a |
|
| ralprd.b |
|
| raltpd.c |
|
| Ref | Expression |
|---|---|
| raltpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an3andi 1445 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | ralprd.a |
. . . . . 6
| |
| 4 | ralprd.b |
. . . . . 6
| |
| 5 | raltpd.c |
. . . . . 6
| |
| 6 | ralprd.1 |
. . . . . . . . 9
| |
| 7 | 6 | expcom 451 |
. . . . . . . 8
|
| 8 | 7 | pm5.32d 671 |
. . . . . . 7
|
| 9 | ralprd.2 |
. . . . . . . . 9
| |
| 10 | 9 | expcom 451 |
. . . . . . . 8
|
| 11 | 10 | pm5.32d 671 |
. . . . . . 7
|
| 12 | raltpd.3 |
. . . . . . . . 9
| |
| 13 | 12 | expcom 451 |
. . . . . . . 8
|
| 14 | 13 | pm5.32d 671 |
. . . . . . 7
|
| 15 | 8, 11, 14 | raltpg 4236 |
. . . . . 6
|
| 16 | 3, 4, 5, 15 | syl3anc 1326 |
. . . . 5
|
| 17 | 3 | tpnzd 4314 |
. . . . . 6
|
| 18 | r19.28zv 4066 |
. . . . . 6
| |
| 19 | 17, 18 | syl 17 |
. . . . 5
|
| 20 | 2, 16, 19 | 3bitr2d 296 |
. . . 4
|
| 21 | 20 | bianabs 924 |
. . 3
|
| 22 | 21 | bicomd 213 |
. 2
|
| 23 | 22 | bianabs 924 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: eqwrds3 13704 trgcgrg 25410 tgcgr4 25426 cplgr3v 26331 |
| Copyright terms: Public domain | W3C validator |