MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raltpd Structured version   Visualization version   Unicode version

Theorem raltpd 4315
Description: Convert a quantification over a triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.)
Hypotheses
Ref Expression
ralprd.1  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
ralprd.2  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  th ) )
raltpd.3  |-  ( (
ph  /\  x  =  C )  ->  ( ps 
<->  ta ) )
ralprd.a  |-  ( ph  ->  A  e.  V )
ralprd.b  |-  ( ph  ->  B  e.  W )
raltpd.c  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
raltpd  |-  ( ph  ->  ( A. x  e. 
{ A ,  B ,  C } ps  <->  ( ch  /\ 
th  /\  ta )
) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    ch, x    th, x    ta, x
Allowed substitution hints:    ps( x)    V( x)    W( x)    X( x)

Proof of Theorem raltpd
StepHypRef Expression
1 an3andi 1445 . . . . . 6  |-  ( (
ph  /\  ( ch  /\ 
th  /\  ta )
)  <->  ( ( ph  /\ 
ch )  /\  ( ph  /\  th )  /\  ( ph  /\  ta )
) )
21a1i 11 . . . . 5  |-  ( ph  ->  ( ( ph  /\  ( ch  /\  th  /\  ta ) )  <->  ( ( ph  /\  ch )  /\  ( ph  /\  th )  /\  ( ph  /\  ta ) ) ) )
3 ralprd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
4 ralprd.b . . . . . 6  |-  ( ph  ->  B  e.  W )
5 raltpd.c . . . . . 6  |-  ( ph  ->  C  e.  X )
6 ralprd.1 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
76expcom 451 . . . . . . . 8  |-  ( x  =  A  ->  ( ph  ->  ( ps  <->  ch )
) )
87pm5.32d 671 . . . . . . 7  |-  ( x  =  A  ->  (
( ph  /\  ps )  <->  (
ph  /\  ch )
) )
9 ralprd.2 . . . . . . . . 9  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  th ) )
109expcom 451 . . . . . . . 8  |-  ( x  =  B  ->  ( ph  ->  ( ps  <->  th )
) )
1110pm5.32d 671 . . . . . . 7  |-  ( x  =  B  ->  (
( ph  /\  ps )  <->  (
ph  /\  th )
) )
12 raltpd.3 . . . . . . . . 9  |-  ( (
ph  /\  x  =  C )  ->  ( ps 
<->  ta ) )
1312expcom 451 . . . . . . . 8  |-  ( x  =  C  ->  ( ph  ->  ( ps  <->  ta )
) )
1413pm5.32d 671 . . . . . . 7  |-  ( x  =  C  ->  (
( ph  /\  ps )  <->  (
ph  /\  ta )
) )
158, 11, 14raltpg 4236 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x  e. 
{ A ,  B ,  C }  ( ph  /\ 
ps )  <->  ( ( ph  /\  ch )  /\  ( ph  /\  th )  /\  ( ph  /\  ta ) ) ) )
163, 4, 5, 15syl3anc 1326 . . . . 5  |-  ( ph  ->  ( A. x  e. 
{ A ,  B ,  C }  ( ph  /\ 
ps )  <->  ( ( ph  /\  ch )  /\  ( ph  /\  th )  /\  ( ph  /\  ta ) ) ) )
173tpnzd 4314 . . . . . 6  |-  ( ph  ->  { A ,  B ,  C }  =/=  (/) )
18 r19.28zv 4066 . . . . . 6  |-  ( { A ,  B ,  C }  =/=  (/)  ->  ( A. x  e.  { A ,  B ,  C } 
( ph  /\  ps )  <->  (
ph  /\  A. x  e.  { A ,  B ,  C } ps )
) )
1917, 18syl 17 . . . . 5  |-  ( ph  ->  ( A. x  e. 
{ A ,  B ,  C }  ( ph  /\ 
ps )  <->  ( ph  /\ 
A. x  e.  { A ,  B ,  C } ps ) ) )
202, 16, 193bitr2d 296 . . . 4  |-  ( ph  ->  ( ( ph  /\  ( ch  /\  th  /\  ta ) )  <->  ( ph  /\ 
A. x  e.  { A ,  B ,  C } ps ) ) )
2120bianabs 924 . . 3  |-  ( ph  ->  ( ( ph  /\  ( ch  /\  th  /\  ta ) )  <->  A. x  e.  { A ,  B ,  C } ps )
)
2221bicomd 213 . 2  |-  ( ph  ->  ( A. x  e. 
{ A ,  B ,  C } ps  <->  ( ph  /\  ( ch  /\  th  /\  ta ) ) ) )
2322bianabs 924 1  |-  ( ph  ->  ( A. x  e. 
{ A ,  B ,  C } ps  <->  ( ch  /\ 
th  /\  ta )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  eqwrds3  13704  trgcgrg  25410  tgcgr4  25426  cplgr3v  26331
  Copyright terms: Public domain W3C validator