MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqwrds3 Structured version   Visualization version   Unicode version

Theorem eqwrds3 13704
Description: A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
Assertion
Ref Expression
eqwrds3  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( W  =  <" A B C ">  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  A  /\  ( W `  1 )  =  B  /\  ( W `  2 )  =  C ) ) ) )

Proof of Theorem eqwrds3
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 s3cl 13624 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  <" A B C ">  e. Word  V )
2 eqwrd 13346 . . 3  |-  ( ( W  e. Word  V  /\  <" A B C ">  e. Word  V
)  ->  ( W  =  <" A B C ">  <->  ( ( # `
 W )  =  ( # `  <" A B C "> )  /\  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( <" A B C "> `  i
) ) ) )
31, 2sylan2 491 . 2  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( W  =  <" A B C ">  <->  ( ( # `
 W )  =  ( # `  <" A B C "> )  /\  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( <" A B C "> `  i
) ) ) )
4 s3len 13639 . . . . 5  |-  ( # `  <" A B C "> )  =  3
54eqeq2i 2634 . . . 4  |-  ( (
# `  W )  =  ( # `  <" A B C "> )  <->  ( # `  W
)  =  3 )
65a1i 11 . . 3  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( # `  W )  =  ( # `  <" A B C "> )  <->  ( # `  W
)  =  3 ) )
76anbi1d 741 . 2  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( ( # `  W
)  =  ( # `  <" A B C "> )  /\  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( <" A B C "> `  i
) )  <->  ( ( # `
 W )  =  3  /\  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( <" A B C "> `  i
) ) ) )
8 oveq2 6658 . . . . . 6  |-  ( (
# `  W )  =  3  ->  (
0..^ ( # `  W
) )  =  ( 0..^ 3 ) )
9 fzo0to3tp 12554 . . . . . 6  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
108, 9syl6eq 2672 . . . . 5  |-  ( (
# `  W )  =  3  ->  (
0..^ ( # `  W
) )  =  {
0 ,  1 ,  2 } )
1110raleqdv 3144 . . . 4  |-  ( (
# `  W )  =  3  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( <" A B C "> `  i
)  <->  A. i  e.  {
0 ,  1 ,  2 }  ( W `
 i )  =  ( <" A B C "> `  i
) ) )
12 fveq2 6191 . . . . . . . 8  |-  ( i  =  0  ->  ( W `  i )  =  ( W ` 
0 ) )
13 fveq2 6191 . . . . . . . 8  |-  ( i  =  0  ->  ( <" A B C "> `  i
)  =  ( <" A B C "> `  0
) )
1412, 13eqeq12d 2637 . . . . . . 7  |-  ( i  =  0  ->  (
( W `  i
)  =  ( <" A B C "> `  i
)  <->  ( W ` 
0 )  =  (
<" A B C "> `  0
) ) )
15 s3fv0 13636 . . . . . . . . 9  |-  ( A  e.  V  ->  ( <" A B C "> `  0
)  =  A )
16153ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( <" A B C "> `  0
)  =  A )
1716eqeq2d 2632 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( W ` 
0 )  =  (
<" A B C "> `  0
)  <->  ( W ` 
0 )  =  A ) )
1814, 17sylan9bbr 737 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  i  = 
0 )  ->  (
( W `  i
)  =  ( <" A B C "> `  i
)  <->  ( W ` 
0 )  =  A ) )
19 fveq2 6191 . . . . . . . 8  |-  ( i  =  1  ->  ( W `  i )  =  ( W ` 
1 ) )
20 fveq2 6191 . . . . . . . 8  |-  ( i  =  1  ->  ( <" A B C "> `  i
)  =  ( <" A B C "> `  1
) )
2119, 20eqeq12d 2637 . . . . . . 7  |-  ( i  =  1  ->  (
( W `  i
)  =  ( <" A B C "> `  i
)  <->  ( W ` 
1 )  =  (
<" A B C "> `  1
) ) )
22 s3fv1 13637 . . . . . . . . 9  |-  ( B  e.  V  ->  ( <" A B C "> `  1
)  =  B )
2322eqeq2d 2632 . . . . . . . 8  |-  ( B  e.  V  ->  (
( W `  1
)  =  ( <" A B C "> `  1
)  <->  ( W ` 
1 )  =  B ) )
24233ad2ant2 1083 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( W ` 
1 )  =  (
<" A B C "> `  1
)  <->  ( W ` 
1 )  =  B ) )
2521, 24sylan9bbr 737 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  i  = 
1 )  ->  (
( W `  i
)  =  ( <" A B C "> `  i
)  <->  ( W ` 
1 )  =  B ) )
26 fveq2 6191 . . . . . . . 8  |-  ( i  =  2  ->  ( W `  i )  =  ( W ` 
2 ) )
27 fveq2 6191 . . . . . . . 8  |-  ( i  =  2  ->  ( <" A B C "> `  i
)  =  ( <" A B C "> `  2
) )
2826, 27eqeq12d 2637 . . . . . . 7  |-  ( i  =  2  ->  (
( W `  i
)  =  ( <" A B C "> `  i
)  <->  ( W ` 
2 )  =  (
<" A B C "> `  2
) ) )
29 s3fv2 13638 . . . . . . . . 9  |-  ( C  e.  V  ->  ( <" A B C "> `  2
)  =  C )
3029eqeq2d 2632 . . . . . . . 8  |-  ( C  e.  V  ->  (
( W `  2
)  =  ( <" A B C "> `  2
)  <->  ( W ` 
2 )  =  C ) )
31303ad2ant3 1084 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( W ` 
2 )  =  (
<" A B C "> `  2
)  <->  ( W ` 
2 )  =  C ) )
3228, 31sylan9bbr 737 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  i  = 
2 )  ->  (
( W `  i
)  =  ( <" A B C "> `  i
)  <->  ( W ` 
2 )  =  C ) )
33 0zd 11389 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  0  e.  ZZ )
34 1zzd 11408 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  1  e.  ZZ )
35 2z 11409 . . . . . . 7  |-  2  e.  ZZ
3635a1i 11 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  2  e.  ZZ )
3718, 25, 32, 33, 34, 36raltpd 4315 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A. i  e. 
{ 0 ,  1 ,  2 }  ( W `  i )  =  ( <" A B C "> `  i
)  <->  ( ( W `
 0 )  =  A  /\  ( W `
 1 )  =  B  /\  ( W `
 2 )  =  C ) ) )
3837adantl 482 . . . 4  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( A. i  e.  { 0 ,  1 ,  2 }  ( W `  i )  =  (
<" A B C "> `  i
)  <->  ( ( W `
 0 )  =  A  /\  ( W `
 1 )  =  B  /\  ( W `
 2 )  =  C ) ) )
3911, 38sylan9bbr 737 . . 3  |-  ( ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( # `
 W )  =  3 )  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( <" A B C "> `  i
)  <->  ( ( W `
 0 )  =  A  /\  ( W `
 1 )  =  B  /\  ( W `
 2 )  =  C ) ) )
4039pm5.32da 673 . 2  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( ( # `  W
)  =  3  /\ 
A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( <" A B C "> `  i
) )  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  A  /\  ( W `  1 )  =  B  /\  ( W `  2 )  =  C ) ) ) )
413, 7, 403bitrd 294 1  |-  ( ( W  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( W  =  <" A B C ">  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  A  /\  ( W `  1 )  =  B  /\  ( W `  2 )  =  C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {ctp 4181   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   ZZcz 11377  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594
This theorem is referenced by:  wrdl3s3  13705  s3sndisj  13706  s3iunsndisj  13707  elwwlks2ons3  26848  umgrwwlks2on  26850  elwwlks2  26861  elwspths2spth  26862
  Copyright terms: Public domain W3C validator