MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr3v Structured version   Visualization version   Unicode version

Theorem cplgr3v 26331
Description: A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.)
Hypotheses
Ref Expression
cplgr3v.e  |-  E  =  (Edg `  G )
cplgr3v.t  |-  (Vtx `  G )  =  { A ,  B ,  C }
Assertion
Ref Expression
cplgr3v  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( G  e. ComplGraph  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E ) ) )

Proof of Theorem cplgr3v
Dummy variables  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplgr3v.t . . . . 5  |-  (Vtx `  G )  =  { A ,  B ,  C }
21eqcomi 2631 . . . 4  |-  { A ,  B ,  C }  =  (Vtx `  G )
32iscplgrnb 26312 . . 3  |-  ( G  e. UPGraph  ->  ( G  e. ComplGraph  <->  A. v  e.  { A ,  B ,  C } A. n  e.  ( { A ,  B ,  C }  \  { v } ) n  e.  ( G NeighbVtx  v )
) )
433ad2ant2 1083 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( G  e. ComplGraph  <->  A. v  e.  { A ,  B ,  C } A. n  e.  ( { A ,  B ,  C }  \  { v } ) n  e.  ( G NeighbVtx  v ) ) )
5 sneq 4187 . . . . . 6  |-  ( v  =  A  ->  { v }  =  { A } )
65difeq2d 3728 . . . . 5  |-  ( v  =  A  ->  ( { A ,  B ,  C }  \  { v } )  =  ( { A ,  B ,  C }  \  { A } ) )
7 tprot 4284 . . . . . . . 8  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
87difeq1i 3724 . . . . . . 7  |-  ( { A ,  B ,  C }  \  { A } )  =  ( { B ,  C ,  A }  \  { A } )
9 necom 2847 . . . . . . . . 9  |-  ( A  =/=  B  <->  B  =/=  A )
10 necom 2847 . . . . . . . . 9  |-  ( A  =/=  C  <->  C  =/=  A )
11 diftpsn3 4332 . . . . . . . . 9  |-  ( ( B  =/=  A  /\  C  =/=  A )  -> 
( { B ,  C ,  A }  \  { A } )  =  { B ,  C } )
129, 10, 11syl2anb 496 . . . . . . . 8  |-  ( ( A  =/=  B  /\  A  =/=  C )  -> 
( { B ,  C ,  A }  \  { A } )  =  { B ,  C } )
13123adant3 1081 . . . . . . 7  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( { B ,  C ,  A }  \  { A } )  =  { B ,  C }
)
148, 13syl5eq 2668 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( { A ,  B ,  C }  \  { A } )  =  { B ,  C }
)
15143ad2ant3 1084 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( { A ,  B ,  C }  \  { A } )  =  { B ,  C }
)
166, 15sylan9eqr 2678 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  A )  ->  ( { A ,  B ,  C }  \  { v } )  =  { B ,  C }
)
17 oveq2 6658 . . . . . 6  |-  ( v  =  A  ->  ( G NeighbVtx  v )  =  ( G NeighbVtx  A ) )
1817eleq2d 2687 . . . . 5  |-  ( v  =  A  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  A ) ) )
1918adantl 482 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  A )  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  A ) ) )
2016, 19raleqbidv 3152 . . 3  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  A )  ->  ( A. n  e.  ( { A ,  B ,  C }  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  { B ,  C } n  e.  ( G NeighbVtx  A )
) )
21 sneq 4187 . . . . . 6  |-  ( v  =  B  ->  { v }  =  { B } )
2221difeq2d 3728 . . . . 5  |-  ( v  =  B  ->  ( { A ,  B ,  C }  \  { v } )  =  ( { A ,  B ,  C }  \  { B } ) )
23 tprot 4284 . . . . . . . . 9  |-  { C ,  A ,  B }  =  { A ,  B ,  C }
2423eqcomi 2631 . . . . . . . 8  |-  { A ,  B ,  C }  =  { C ,  A ,  B }
2524difeq1i 3724 . . . . . . 7  |-  ( { A ,  B ,  C }  \  { B } )  =  ( { C ,  A ,  B }  \  { B } )
26 necom 2847 . . . . . . . . . . . 12  |-  ( B  =/=  C  <->  C  =/=  B )
2726biimpi 206 . . . . . . . . . . 11  |-  ( B  =/=  C  ->  C  =/=  B )
2827anim2i 593 . . . . . . . . . 10  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( A  =/=  B  /\  C  =/=  B
) )
2928ancomd 467 . . . . . . . . 9  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( C  =/=  B  /\  A  =/=  B
) )
30 diftpsn3 4332 . . . . . . . . 9  |-  ( ( C  =/=  B  /\  A  =/=  B )  -> 
( { C ,  A ,  B }  \  { B } )  =  { C ,  A } )
3129, 30syl 17 . . . . . . . 8  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { C ,  A ,  B }  \  { B } )  =  { C ,  A } )
32313adant2 1080 . . . . . . 7  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( { C ,  A ,  B }  \  { B } )  =  { C ,  A }
)
3325, 32syl5eq 2668 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( { A ,  B ,  C }  \  { B } )  =  { C ,  A }
)
34333ad2ant3 1084 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( { A ,  B ,  C }  \  { B } )  =  { C ,  A }
)
3522, 34sylan9eqr 2678 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  B )  ->  ( { A ,  B ,  C }  \  { v } )  =  { C ,  A }
)
36 oveq2 6658 . . . . . 6  |-  ( v  =  B  ->  ( G NeighbVtx  v )  =  ( G NeighbVtx  B ) )
3736eleq2d 2687 . . . . 5  |-  ( v  =  B  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  B ) ) )
3837adantl 482 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  B )  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  B ) ) )
3935, 38raleqbidv 3152 . . 3  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  B )  ->  ( A. n  e.  ( { A ,  B ,  C }  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  { C ,  A } n  e.  ( G NeighbVtx  B )
) )
40 sneq 4187 . . . . . 6  |-  ( v  =  C  ->  { v }  =  { C } )
4140difeq2d 3728 . . . . 5  |-  ( v  =  C  ->  ( { A ,  B ,  C }  \  { v } )  =  ( { A ,  B ,  C }  \  { C } ) )
42 diftpsn3 4332 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
43423adant1 1079 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( { A ,  B ,  C }  \  { C } )  =  { A ,  B }
)
44433ad2ant3 1084 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( { A ,  B ,  C }  \  { C } )  =  { A ,  B }
)
4541, 44sylan9eqr 2678 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  C )  ->  ( { A ,  B ,  C }  \  { v } )  =  { A ,  B }
)
46 oveq2 6658 . . . . . 6  |-  ( v  =  C  ->  ( G NeighbVtx  v )  =  ( G NeighbVtx  C ) )
4746eleq2d 2687 . . . . 5  |-  ( v  =  C  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  C ) ) )
4847adantl 482 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  C )  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  C ) ) )
4945, 48raleqbidv 3152 . . 3  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  G  e. UPGraph  /\  ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  v  =  C )  ->  ( A. n  e.  ( { A ,  B ,  C }  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  { A ,  B } n  e.  ( G NeighbVtx  C )
) )
50 simp1 1061 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  A  e.  X )
51503ad2ant1 1082 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  A  e.  X )
52 simp2 1062 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  B  e.  Y )
53523ad2ant1 1082 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  B  e.  Y )
54 simp3 1063 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  C  e.  Z )
55543ad2ant1 1082 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  C  e.  Z )
5620, 39, 49, 51, 53, 55raltpd 4315 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( A. v  e.  { A ,  B ,  C } A. n  e.  ( { A ,  B ,  C }  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  ( A. n  e.  { B ,  C }
n  e.  ( G NeighbVtx  A )  /\  A. n  e.  { C ,  A } n  e.  ( G NeighbVtx  B )  /\  A. n  e.  { A ,  B }
n  e.  ( G NeighbVtx  C ) ) ) )
57 eleq1 2689 . . . . . . 7  |-  ( n  =  B  ->  (
n  e.  ( G NeighbVtx  A )  <->  B  e.  ( G NeighbVtx  A ) ) )
58 eleq1 2689 . . . . . . 7  |-  ( n  =  C  ->  (
n  e.  ( G NeighbVtx  A )  <->  C  e.  ( G NeighbVtx  A ) ) )
5957, 58ralprg 4234 . . . . . 6  |-  ( ( B  e.  Y  /\  C  e.  Z )  ->  ( A. n  e. 
{ B ,  C } n  e.  ( G NeighbVtx  A )  <->  ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  A ) ) ) )
60593adant1 1079 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A. n  e. 
{ B ,  C } n  e.  ( G NeighbVtx  A )  <->  ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  A ) ) ) )
61 eleq1 2689 . . . . . . . 8  |-  ( n  =  C  ->  (
n  e.  ( G NeighbVtx  B )  <->  C  e.  ( G NeighbVtx  B ) ) )
62 eleq1 2689 . . . . . . . 8  |-  ( n  =  A  ->  (
n  e.  ( G NeighbVtx  B )  <->  A  e.  ( G NeighbVtx  B ) ) )
6361, 62ralprg 4234 . . . . . . 7  |-  ( ( C  e.  Z  /\  A  e.  X )  ->  ( A. n  e. 
{ C ,  A } n  e.  ( G NeighbVtx  B )  <->  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B ) ) ) )
6463ancoms 469 . . . . . 6  |-  ( ( A  e.  X  /\  C  e.  Z )  ->  ( A. n  e. 
{ C ,  A } n  e.  ( G NeighbVtx  B )  <->  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B ) ) ) )
65643adant2 1080 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A. n  e. 
{ C ,  A } n  e.  ( G NeighbVtx  B )  <->  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B ) ) ) )
66 eleq1 2689 . . . . . . 7  |-  ( n  =  A  ->  (
n  e.  ( G NeighbVtx  C )  <->  A  e.  ( G NeighbVtx  C ) ) )
67 eleq1 2689 . . . . . . 7  |-  ( n  =  B  ->  (
n  e.  ( G NeighbVtx  C )  <->  B  e.  ( G NeighbVtx  C ) ) )
6866, 67ralprg 4234 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A. n  e. 
{ A ,  B } n  e.  ( G NeighbVtx  C )  <->  ( A  e.  ( G NeighbVtx  C )  /\  B  e.  ( G NeighbVtx  C ) ) ) )
69683adant3 1081 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A. n  e. 
{ A ,  B } n  e.  ( G NeighbVtx  C )  <->  ( A  e.  ( G NeighbVtx  C )  /\  B  e.  ( G NeighbVtx  C ) ) ) )
7060, 65, 693anbi123d 1399 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( ( A. n  e.  { B ,  C } n  e.  ( G NeighbVtx  A )  /\  A. n  e.  { C ,  A } n  e.  ( G NeighbVtx  B )  /\  A. n  e.  { A ,  B }
n  e.  ( G NeighbVtx  C ) )  <->  ( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  A )
)  /\  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B ) )  /\  ( A  e.  ( G NeighbVtx  C )  /\  B  e.  ( G NeighbVtx  C )
) ) ) )
71703ad2ant1 1082 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( A. n  e. 
{ B ,  C } n  e.  ( G NeighbVtx  A )  /\  A. n  e.  { C ,  A } n  e.  ( G NeighbVtx  B )  /\  A. n  e.  { A ,  B }
n  e.  ( G NeighbVtx  C ) )  <->  ( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  A )
)  /\  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B ) )  /\  ( A  e.  ( G NeighbVtx  C )  /\  B  e.  ( G NeighbVtx  C )
) ) ) )
72 3an6 1409 . . . 4  |-  ( ( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  A )
)  /\  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B ) )  /\  ( A  e.  ( G NeighbVtx  C )  /\  B  e.  ( G NeighbVtx  C )
) )  <->  ( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  C ) )  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) ) )
7372a1i 11 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  A ) )  /\  ( C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  B )
)  /\  ( A  e.  ( G NeighbVtx  C )  /\  B  e.  ( G NeighbVtx  C ) ) )  <-> 
( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  C )
)  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) ) ) )
74 nbgrsym 26265 . . . . . . 7  |-  ( G  e. UPGraph  ->  ( B  e.  ( G NeighbVtx  A )  <->  A  e.  ( G NeighbVtx  B ) ) )
75 nbgrsym 26265 . . . . . . 7  |-  ( G  e. UPGraph  ->  ( C  e.  ( G NeighbVtx  B )  <->  B  e.  ( G NeighbVtx  C ) ) )
76 nbgrsym 26265 . . . . . . 7  |-  ( G  e. UPGraph  ->  ( A  e.  ( G NeighbVtx  C )  <->  C  e.  ( G NeighbVtx  A ) ) )
7774, 75, 763anbi123d 1399 . . . . . 6  |-  ( G  e. UPGraph  ->  ( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  C )
)  <->  ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A )
) ) )
78773ad2ant2 1083 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  C ) )  <->  ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A )
) ) )
7978anbi1d 741 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  C )
)  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) )  <->  ( ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A ) )  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) ) ) )
80 3anrot 1043 . . . . . . . 8  |-  ( ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) )  <->  ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A )
) )
8180bicomi 214 . . . . . . 7  |-  ( ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A ) )  <->  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) )
8281anbi1i 731 . . . . . 6  |-  ( ( ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A ) )  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) )  <-> 
( ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
)  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) ) )
83 anidm 676 . . . . . 6  |-  ( ( ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) )  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) )  <-> 
( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) )
8482, 83bitri 264 . . . . 5  |-  ( ( ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A ) )  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) )  <-> 
( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) ) )
8584a1i 11 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( ( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A )
)  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) )  <->  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) ) )
86 tpid3g 4305 . . . . . . . . 9  |-  ( A  e.  X  ->  A  e.  { B ,  C ,  A } )
8786, 7syl6eleqr 2712 . . . . . . . 8  |-  ( A  e.  X  ->  A  e.  { A ,  B ,  C } )
88 tpid3g 4305 . . . . . . . . 9  |-  ( B  e.  Y  ->  B  e.  { C ,  A ,  B } )
8988, 24syl6eleqr 2712 . . . . . . . 8  |-  ( B  e.  Y  ->  B  e.  { A ,  B ,  C } )
90 tpid3g 4305 . . . . . . . 8  |-  ( C  e.  Z  ->  C  e.  { A ,  B ,  C } )
9187, 89, 903anim123i 1247 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A  e.  { A ,  B ,  C }  /\  B  e. 
{ A ,  B ,  C }  /\  C  e.  { A ,  B ,  C } ) )
92 df-3an 1039 . . . . . . 7  |-  ( ( A  e.  { A ,  B ,  C }  /\  B  e.  { A ,  B ,  C }  /\  C  e.  { A ,  B ,  C }
)  <->  ( ( A  e.  { A ,  B ,  C }  /\  B  e.  { A ,  B ,  C }
)  /\  C  e.  { A ,  B ,  C } ) )
9391, 92sylib 208 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
) )
94 simpr 477 . . . . . . . . . . . 12  |-  ( ( A  e.  { A ,  B ,  C }  /\  B  e.  { A ,  B ,  C }
)  ->  B  e.  { A ,  B ,  C } )
9594adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  { A ,  B ,  C }  /\  B  e. 
{ A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  ->  B  e.  { A ,  B ,  C } )
9695anim1i 592 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  )  ->  ( B  e. 
{ A ,  B ,  C }  /\  G  e. UPGraph  ) )
9796ancomd 467 . . . . . . . . 9  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  )  ->  ( G  e. UPGraph  /\  B  e.  { A ,  B ,  C }
) )
98973adant3 1081 . . . . . . . 8  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( G  e. UPGraph  /\  B  e. 
{ A ,  B ,  C } ) )
99 simpll 790 . . . . . . . . . 10  |-  ( ( ( A  e.  { A ,  B ,  C }  /\  B  e. 
{ A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  ->  A  e.  { A ,  B ,  C } )
100 simp1 1061 . . . . . . . . . 10  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  A  =/=  B )
10199, 100anim12i 590 . . . . . . . . 9  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  ( A  e.  { A ,  B ,  C }  /\  A  =/=  B
) )
1021013adant2 1080 . . . . . . . 8  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( A  e.  { A ,  B ,  C }  /\  A  =/=  B
) )
103 cplgr3v.e . . . . . . . . 9  |-  E  =  (Edg `  G )
1042, 103nbupgrel 26241 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  B  e.  { A ,  B ,  C } )  /\  ( A  e.  { A ,  B ,  C }  /\  A  =/=  B
) )  ->  ( A  e.  ( G NeighbVtx  B )  <->  { A ,  B }  e.  E )
)
10598, 102, 104syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( A  e.  ( G NeighbVtx  B )  <->  { A ,  B }  e.  E )
)
106 simpr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  { A ,  B ,  C }  /\  B  e. 
{ A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  ->  C  e.  { A ,  B ,  C } )
107106anim1i 592 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  )  ->  ( C  e. 
{ A ,  B ,  C }  /\  G  e. UPGraph  ) )
108107ancomd 467 . . . . . . . . 9  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  )  ->  ( G  e. UPGraph  /\  C  e.  { A ,  B ,  C }
) )
1091083adant3 1081 . . . . . . . 8  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( G  e. UPGraph  /\  C  e. 
{ A ,  B ,  C } ) )
110 simp3 1063 . . . . . . . . . 10  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  B  =/=  C )
11195, 110anim12i 590 . . . . . . . . 9  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  ( B  e.  { A ,  B ,  C }  /\  B  =/=  C
) )
1121113adant2 1080 . . . . . . . 8  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( B  e.  { A ,  B ,  C }  /\  B  =/=  C
) )
1132, 103nbupgrel 26241 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  C  e.  { A ,  B ,  C } )  /\  ( B  e.  { A ,  B ,  C }  /\  B  =/=  C
) )  ->  ( B  e.  ( G NeighbVtx  C )  <->  { B ,  C }  e.  E )
)
114109, 112, 113syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( B  e.  ( G NeighbVtx  C )  <->  { B ,  C }  e.  E )
)
11599anim1i 592 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  )  ->  ( A  e. 
{ A ,  B ,  C }  /\  G  e. UPGraph  ) )
116115ancomd 467 . . . . . . . . 9  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  )  ->  ( G  e. UPGraph  /\  A  e.  { A ,  B ,  C }
) )
1171163adant3 1081 . . . . . . . 8  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( G  e. UPGraph  /\  A  e. 
{ A ,  B ,  C } ) )
118 simp2 1062 . . . . . . . . . . 11  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  A  =/=  C )
119118necomd 2849 . . . . . . . . . 10  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  C  =/=  A )
120106, 119anim12i 590 . . . . . . . . 9  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  ( C  e.  { A ,  B ,  C }  /\  C  =/=  A
) )
1211203adant2 1080 . . . . . . . 8  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( C  e.  { A ,  B ,  C }  /\  C  =/=  A
) )
1222, 103nbupgrel 26241 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  A  e.  { A ,  B ,  C } )  /\  ( C  e.  { A ,  B ,  C }  /\  C  =/=  A
) )  ->  ( C  e.  ( G NeighbVtx  A )  <->  { C ,  A }  e.  E )
)
123117, 121, 122syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( C  e.  ( G NeighbVtx  A )  <->  { C ,  A }  e.  E )
)
124105, 114, 1233anbi123d 1399 . . . . . 6  |-  ( ( ( ( A  e. 
{ A ,  B ,  C }  /\  B  e.  { A ,  B ,  C } )  /\  C  e.  { A ,  B ,  C }
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A ) )  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
) )
12593, 124syl3an1 1359 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )  /\  C  e.  ( G NeighbVtx  A ) )  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
) )
12680, 125syl5bb 272 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C ) )  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
) )
12779, 85, 1263bitrd 294 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( ( B  e.  ( G NeighbVtx  A )  /\  C  e.  ( G NeighbVtx  B )  /\  A  e.  ( G NeighbVtx  C )
)  /\  ( C  e.  ( G NeighbVtx  A )  /\  A  e.  ( G NeighbVtx  B )  /\  B  e.  ( G NeighbVtx  C )
) )  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
) )
12871, 73, 1273bitrd 294 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  (
( A. n  e. 
{ B ,  C } n  e.  ( G NeighbVtx  A )  /\  A. n  e.  { C ,  A } n  e.  ( G NeighbVtx  B )  /\  A. n  e.  { A ,  B }
n  e.  ( G NeighbVtx  C ) )  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
) )
1294, 56, 1283bitrd 294 1  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  G  e. UPGraph  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  ( G  e. ComplGraph  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177   {cpr 4179   {ctp 4181   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975   NeighbVtx cnbgr 26224  ComplGraphccplgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231
This theorem is referenced by:  cusgr3vnbpr  26332
  Copyright terms: Public domain W3C validator