| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raltpg | Structured version Visualization version Unicode version | ||
| Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralprg.1 |
|
| ralprg.2 |
|
| raltpg.3 |
|
| Ref | Expression |
|---|---|
| raltpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 |
. . . . 5
| |
| 2 | ralprg.2 |
. . . . 5
| |
| 3 | 1, 2 | ralprg 4234 |
. . . 4
|
| 4 | raltpg.3 |
. . . . 5
| |
| 5 | 4 | ralsng 4218 |
. . . 4
|
| 6 | 3, 5 | bi2anan9 917 |
. . 3
|
| 7 | 6 | 3impa 1259 |
. 2
|
| 8 | df-tp 4182 |
. . . 4
| |
| 9 | 8 | raleqi 3142 |
. . 3
|
| 10 | ralunb 3794 |
. . 3
| |
| 11 | 9, 10 | bitri 264 |
. 2
|
| 12 | df-3an 1039 |
. 2
| |
| 13 | 7, 11, 12 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: raltp 4240 raltpd 4315 f13dfv 6530 sumtp 14478 lcmftp 15349 nb3grpr 26284 frgr3v 27139 |
| Copyright terms: Public domain | W3C validator |