| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxfr2d | Structured version Visualization version Unicode version | ||
| Description: Transfer universal
quantification from a variable |
| Ref | Expression |
|---|---|
| ralxfr2d.1 |
|
| ralxfr2d.2 |
|
| ralxfr2d.3 |
|
| Ref | Expression |
|---|---|
| ralxfr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr2d.1 |
. . . 4
| |
| 2 | elisset 3215 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | ralxfr2d.2 |
. . . . . . . 8
| |
| 5 | 4 | biimprd 238 |
. . . . . . 7
|
| 6 | r19.23v 3023 |
. . . . . . 7
| |
| 7 | 5, 6 | sylibr 224 |
. . . . . 6
|
| 8 | 7 | r19.21bi 2932 |
. . . . 5
|
| 9 | eleq1 2689 |
. . . . 5
| |
| 10 | 8, 9 | mpbidi 231 |
. . . 4
|
| 11 | 10 | exlimdv 1861 |
. . 3
|
| 12 | 3, 11 | mpd 15 |
. 2
|
| 13 | 4 | biimpa 501 |
. 2
|
| 14 | ralxfr2d.3 |
. 2
| |
| 15 | 12, 13, 14 | ralxfrd 4879 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: rexxfr2d 4883 ralrn 6362 ralima 6498 cnrest2 21090 cnprest2 21094 connsuba 21223 subislly 21284 trfbas2 21647 trfil2 21691 flimrest 21787 fclsrest 21828 tsmssubm 21946 metucn 22376 extoimad 38464 |
| Copyright terms: Public domain | W3C validator |