MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfr2d Structured version   Visualization version   Unicode version

Theorem ralxfr2d 4882
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.)
Hypotheses
Ref Expression
ralxfr2d.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  V )
ralxfr2d.2  |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A ) )
ralxfr2d.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralxfr2d  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)    V( x, y)

Proof of Theorem ralxfr2d
StepHypRef Expression
1 ralxfr2d.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  V )
2 elisset 3215 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
31, 2syl 17 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  E. x  x  =  A )
4 ralxfr2d.2 . . . . . . . 8  |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A ) )
54biimprd 238 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  C  x  =  A  ->  x  e.  B
) )
6 r19.23v 3023 . . . . . . 7  |-  ( A. y  e.  C  (
x  =  A  ->  x  e.  B )  <->  ( E. y  e.  C  x  =  A  ->  x  e.  B ) )
75, 6sylibr 224 . . . . . 6  |-  ( ph  ->  A. y  e.  C  ( x  =  A  ->  x  e.  B ) )
87r19.21bi 2932 . . . . 5  |-  ( (
ph  /\  y  e.  C )  ->  (
x  =  A  ->  x  e.  B )
)
9 eleq1 2689 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
108, 9mpbidi 231 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  (
x  =  A  ->  A  e.  B )
)
1110exlimdv 1861 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  ( E. x  x  =  A  ->  A  e.  B
) )
123, 11mpd 15 . 2  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
134biimpa 501 . 2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
14 ralxfr2d.3 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
1512, 13, 14ralxfrd 4879 1  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202
This theorem is referenced by:  rexxfr2d  4883  ralrn  6362  ralima  6498  cnrest2  21090  cnprest2  21094  connsuba  21223  subislly  21284  trfbas2  21647  trfil2  21691  flimrest  21787  fclsrest  21828  tsmssubm  21946  metucn  22376  extoimad  38464
  Copyright terms: Public domain W3C validator