Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refimssco Structured version   Visualization version   Unicode version

Theorem refimssco 37913
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.)
Assertion
Ref Expression
refimssco  |-  ( (  _I  |`  ( dom  A  u.  ran  A ) )  C_  A  ->  `' A  C_  `' ( A  o.  A )
)

Proof of Theorem refimssco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
x A z  <->  x A x ) )
2 breq1 4656 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
z A y  <->  x A
y ) )
31, 2anbi12d 747 . . . . . . . . . 10  |-  ( z  =  x  ->  (
( x A z  /\  z A y )  <->  ( x A x  /\  x A y ) ) )
43biimprd 238 . . . . . . . . 9  |-  ( z  =  x  ->  (
( x A x  /\  x A y )  ->  ( x A z  /\  z A y ) ) )
54spimev 2259 . . . . . . . 8  |-  ( ( x A x  /\  x A y )  ->  E. z ( x A z  /\  z A y ) )
65ex 450 . . . . . . 7  |-  ( x A x  ->  (
x A y  ->  E. z ( x A z  /\  z A y ) ) )
76adantr 481 . . . . . 6  |-  ( ( x A x  /\  y A y )  -> 
( x A y  ->  E. z ( x A z  /\  z A y ) ) )
87com12 32 . . . . 5  |-  ( x A y  ->  (
( x A x  /\  y A y )  ->  E. z
( x A z  /\  z A y ) ) )
98a2i 14 . . . 4  |-  ( ( x A y  -> 
( x A x  /\  y A y ) )  ->  (
x A y  ->  E. z ( x A z  /\  z A y ) ) )
10 19.37v 1910 . . . 4  |-  ( E. z ( x A y  ->  ( x A z  /\  z A y ) )  <-> 
( x A y  ->  E. z ( x A z  /\  z A y ) ) )
119, 10sylibr 224 . . 3  |-  ( ( x A y  -> 
( x A x  /\  y A y ) )  ->  E. z
( x A y  ->  ( x A z  /\  z A y ) ) )
12112alimi 1740 . 2  |-  ( A. x A. y ( x A y  ->  (
x A x  /\  y A y ) )  ->  A. x A. y E. z ( x A y  ->  ( x A z  /\  z A y ) ) )
13 reflexg 37911 . 2  |-  ( (  _I  |`  ( dom  A  u.  ran  A ) )  C_  A  <->  A. x A. y ( x A y  ->  ( x A x  /\  y A y ) ) )
14 cnvssco 37912 . 2  |-  ( `' A  C_  `' ( A  o.  A )  <->  A. x A. y E. z ( x A y  ->  ( x A z  /\  z A y ) ) )
1512, 13, 143imtr4i 281 1  |-  ( (  _I  |`  ( dom  A  u.  ran  A ) )  C_  A  ->  `' A  C_  `' ( A  o.  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704    u. cun 3572    C_ wss 3574   class class class wbr 4653    _I cid 5023   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator