Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releccnveq Structured version   Visualization version   Unicode version

Theorem releccnveq 34022
Description: Equality of converse  R-coset and converse  S-coset when  R and  S are relations. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
releccnveq  |-  ( ( Rel  R  /\  Rel  S )  ->  ( [ A ] `' R  =  [ B ] `' S 
<-> 
A. x ( x R A  <->  x S B ) ) )
Distinct variable groups:    x, A    x, B    x, R    x, S

Proof of Theorem releccnveq
StepHypRef Expression
1 dfcleq 2616 . 2  |-  ( [ A ] `' R  =  [ B ] `' S 
<-> 
A. x ( x  e.  [ A ] `' R  <->  x  e.  [ B ] `' S ) )
2 releleccnv 34021 . . . 4  |-  ( Rel 
R  ->  ( x  e.  [ A ] `' R 
<->  x R A ) )
3 releleccnv 34021 . . . 4  |-  ( Rel 
S  ->  ( x  e.  [ B ] `' S 
<->  x S B ) )
42, 3bi2bian9 919 . . 3  |-  ( ( Rel  R  /\  Rel  S )  ->  ( (
x  e.  [ A ] `' R  <->  x  e.  [ B ] `' S )  <->  ( x R A  <->  x S B ) ) )
54albidv 1849 . 2  |-  ( ( Rel  R  /\  Rel  S )  ->  ( A. x ( x  e. 
[ A ] `' R 
<->  x  e.  [ B ] `' S )  <->  A. x
( x R A  <-> 
x S B ) ) )
61, 5syl5bb 272 1  |-  ( ( Rel  R  /\  Rel  S )  ->  ( [ A ] `' R  =  [ B ] `' S 
<-> 
A. x ( x R A  <->  x S B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   class class class wbr 4653   `'ccnv 5113   Rel wrel 5119   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator