Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintab Structured version   Visualization version   Unicode version

Theorem relintab 37889
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintab  |-  ( Rel  |^| { x  |  ph }  ->  |^| { x  | 
ph }  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' `' x  /\  ph ) } )
Distinct variable groups:    ph, w    x, w
Allowed substitution hint:    ph( x)

Proof of Theorem relintab
StepHypRef Expression
1 cnvcnv 5586 . . 3  |-  `' `' |^| { x  |  ph }  =  ( |^| { x  |  ph }  i^i  ( _V  X.  _V ) )
2 incom 3805 . . 3  |-  ( |^| { x  |  ph }  i^i  ( _V  X.  _V ) )  =  ( ( _V  X.  _V )  i^i  |^| { x  | 
ph } )
31, 2eqtri 2644 . 2  |-  `' `' |^| { x  |  ph }  =  ( ( _V  X.  _V )  i^i  |^| { x  |  ph } )
4 dfrel2 5583 . . 3  |-  ( Rel  |^| { x  |  ph } 
<->  `' `' |^| { x  | 
ph }  =  |^| { x  |  ph }
)
54biimpi 206 . 2  |-  ( Rel  |^| { x  |  ph }  ->  `' `' |^| { x  |  ph }  =  |^| { x  | 
ph } )
6 relintabex 37887 . . . 4  |-  ( Rel  |^| { x  |  ph }  ->  E. x ph )
76xpinintabd 37886 . . 3  |-  ( Rel  |^| { x  |  ph }  ->  ( ( _V 
X.  _V )  i^i  |^| { x  |  ph }
)  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  ( ( _V  X.  _V )  i^i  x
)  /\  ph ) } )
8 incom 3805 . . . . . . . . . 10  |-  ( ( _V  X.  _V )  i^i  x )  =  ( x  i^i  ( _V 
X.  _V ) )
9 cnvcnv 5586 . . . . . . . . . 10  |-  `' `' x  =  ( x  i^i  ( _V  X.  _V ) )
108, 9eqtr4i 2647 . . . . . . . . 9  |-  ( ( _V  X.  _V )  i^i  x )  =  `' `' x
1110eqeq2i 2634 . . . . . . . 8  |-  ( w  =  ( ( _V 
X.  _V )  i^i  x
)  <->  w  =  `' `' x )
1211anbi1i 731 . . . . . . 7  |-  ( ( w  =  ( ( _V  X.  _V )  i^i  x )  /\  ph ) 
<->  ( w  =  `' `' x  /\  ph )
)
1312exbii 1774 . . . . . 6  |-  ( E. x ( w  =  ( ( _V  X.  _V )  i^i  x
)  /\  ph )  <->  E. x
( w  =  `' `' x  /\  ph )
)
1413a1i 11 . . . . 5  |-  ( w  e.  ~P ( _V 
X.  _V )  ->  ( E. x ( w  =  ( ( _V  X.  _V )  i^i  x
)  /\  ph )  <->  E. x
( w  =  `' `' x  /\  ph )
) )
1514rabbiia 3185 . . . 4  |-  { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  ( ( _V  X.  _V )  i^i  x
)  /\  ph ) }  =  { w  e. 
~P ( _V  X.  _V )  |  E. x ( w  =  `' `' x  /\  ph ) }
1615inteqi 4479 . . 3  |-  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  ( ( _V  X.  _V )  i^i  x
)  /\  ph ) }  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' `' x  /\  ph ) }
177, 16syl6eq 2672 . 2  |-  ( Rel  |^| { x  |  ph }  ->  ( ( _V 
X.  _V )  i^i  |^| { x  |  ph }
)  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' `' x  /\  ph ) } )
183, 5, 173eqtr3a 2680 1  |-  ( Rel  |^| { x  |  ph }  ->  |^| { x  | 
ph }  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' `' x  /\  ph ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200    i^i cin 3573   ~Pcpw 4158   |^|cint 4475    X. cxp 5112   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator