MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relresfld Structured version   Visualization version   Unicode version

Theorem relresfld 5662
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld  |-  ( Rel 
R  ->  ( R  |` 
U. U. R )  =  R )

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 5661 . . . 4  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
21reseq2d 5396 . . 3  |-  ( Rel 
R  ->  ( R  |` 
U. U. R )  =  ( R  |`  ( dom  R  u.  ran  R
) ) )
3 resundi 5410 . . 3  |-  ( R  |`  ( dom  R  u.  ran  R ) )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )
4 eqtr 2641 . . . 4  |-  ( ( ( R  |`  U. U. R )  =  ( R  |`  ( dom  R  u.  ran  R ) )  /\  ( R  |`  ( dom  R  u.  ran  R ) )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) ) )  ->  ( R  |`  U. U. R
)  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) ) )
5 resss 5422 . . . . 5  |-  ( R  |`  ran  R )  C_  R
6 resdm 5441 . . . . 5  |-  ( Rel 
R  ->  ( R  |` 
dom  R )  =  R )
7 ssequn2 3786 . . . . . 6  |-  ( ( R  |`  ran  R ) 
C_  R  <->  ( R  u.  ( R  |`  ran  R
) )  =  R )
8 uneq1 3760 . . . . . . . . 9  |-  ( ( R  |`  dom  R )  =  R  ->  (
( R  |`  dom  R
)  u.  ( R  |`  ran  R ) )  =  ( R  u.  ( R  |`  ran  R
) ) )
98eqeq2d 2632 . . . . . . . 8  |-  ( ( R  |`  dom  R )  =  R  ->  (
( R  |`  U. U. R )  =  ( ( R  |`  dom  R
)  u.  ( R  |`  ran  R ) )  <-> 
( R  |`  U. U. R )  =  ( R  u.  ( R  |`  ran  R ) ) ) )
10 eqtr 2641 . . . . . . . . 9  |-  ( ( ( R  |`  U. U. R )  =  ( R  u.  ( R  |`  ran  R ) )  /\  ( R  u.  ( R  |`  ran  R
) )  =  R )  ->  ( R  |` 
U. U. R )  =  R )
1110ex 450 . . . . . . . 8  |-  ( ( R  |`  U. U. R
)  =  ( R  u.  ( R  |`  ran  R ) )  -> 
( ( R  u.  ( R  |`  ran  R
) )  =  R  ->  ( R  |`  U.
U. R )  =  R ) )
129, 11syl6bi 243 . . . . . . 7  |-  ( ( R  |`  dom  R )  =  R  ->  (
( R  |`  U. U. R )  =  ( ( R  |`  dom  R
)  u.  ( R  |`  ran  R ) )  ->  ( ( R  u.  ( R  |`  ran  R ) )  =  R  ->  ( R  |` 
U. U. R )  =  R ) ) )
1312com3r 87 . . . . . 6  |-  ( ( R  u.  ( R  |`  ran  R ) )  =  R  ->  (
( R  |`  dom  R
)  =  R  -> 
( ( R  |`  U.
U. R )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )  ->  ( R  |` 
U. U. R )  =  R ) ) )
147, 13sylbi 207 . . . . 5  |-  ( ( R  |`  ran  R ) 
C_  R  ->  (
( R  |`  dom  R
)  =  R  -> 
( ( R  |`  U.
U. R )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )  ->  ( R  |` 
U. U. R )  =  R ) ) )
155, 6, 14mpsyl 68 . . . 4  |-  ( Rel 
R  ->  ( ( R  |`  U. U. R
)  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )  -> 
( R  |`  U. U. R )  =  R ) )
164, 15syl5com 31 . . 3  |-  ( ( ( R  |`  U. U. R )  =  ( R  |`  ( dom  R  u.  ran  R ) )  /\  ( R  |`  ( dom  R  u.  ran  R ) )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( R  |` 
U. U. R )  =  R ) )
172, 3, 16sylancl 694 . 2  |-  ( Rel 
R  ->  ( Rel  R  ->  ( R  |`  U.
U. R )  =  R ) )
1817pm2.43i 52 1  |-  ( Rel 
R  ->  ( R  |` 
U. U. R )  =  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   U.cuni 4436   dom cdm 5114   ran crn 5115    |` cres 5116   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  relcoi1  5664
  Copyright terms: Public domain W3C validator