MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcoi2 Structured version   Visualization version   Unicode version

Theorem relcoi2 5663
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 5384 . . 3  |-  ( dom 
R  u.  ran  R
)  C_  U. U. R
2 unss 3787 . . . 4  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  <->  ( dom  R  u.  ran  R ) 
C_  U. U. R )
3 simpr 477 . . . 4  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  ->  ran  R  C_  U. U. R
)
42, 3sylbir 225 . . 3  |-  ( ( dom  R  u.  ran  R )  C_  U. U. R  ->  ran  R  C_  U. U. R )
5 cores 5638 . . 3  |-  ( ran 
R  C_  U. U. R  ->  ( (  _I  |`  U. U. R )  o.  R
)  =  (  _I  o.  R ) )
61, 4, 5mp2b 10 . 2  |-  ( (  _I  |`  U. U. R
)  o.  R )  =  (  _I  o.  R )
7 coi2 5652 . 2  |-  ( Rel 
R  ->  (  _I  o.  R )  =  R )
86, 7syl5eq 2668 1  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   U.cuni 4436    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  relexpsucr  13769  tsrdir  17238
  Copyright terms: Public domain W3C validator