MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resresdm Structured version   Visualization version   Unicode version

Theorem resresdm 5626
Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
resresdm  |-  ( F  =  ( E  |`  A )  ->  F  =  ( E  |`  dom  F ) )

Proof of Theorem resresdm
StepHypRef Expression
1 id 22 . 2  |-  ( F  =  ( E  |`  A )  ->  F  =  ( E  |`  A ) )
2 dmeq 5324 . . . 4  |-  ( F  =  ( E  |`  A )  ->  dom  F  =  dom  ( E  |`  A ) )
32reseq2d 5396 . . 3  |-  ( F  =  ( E  |`  A )  ->  ( E  |`  dom  F )  =  ( E  |`  dom  ( E  |`  A ) ) )
4 resdmres 5625 . . 3  |-  ( E  |`  dom  ( E  |`  A ) )  =  ( E  |`  A )
53, 4syl6req 2673 . 2  |-  ( F  =  ( E  |`  A )  ->  ( E  |`  A )  =  ( E  |`  dom  F
) )
61, 5eqtrd 2656 1  |-  ( F  =  ( E  |`  A )  ->  F  =  ( E  |`  dom  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   dom cdm 5114    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  uhgrspan1  26195
  Copyright terms: Public domain W3C validator