| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restlly | Structured version Visualization version Unicode version | ||
| Description: If the property |
| Ref | Expression |
|---|---|
| restlly.1 |
|
| restlly.2 |
|
| Ref | Expression |
|---|---|
| restlly |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restlly.2 |
. . . . 5
| |
| 2 | 1 | sselda 3603 |
. . . 4
|
| 3 | simprl 794 |
. . . . . . 7
| |
| 4 | vex 3203 |
. . . . . . . . 9
| |
| 5 | 4 | pwid 4174 |
. . . . . . . 8
|
| 6 | 5 | a1i 11 |
. . . . . . 7
|
| 7 | 3, 6 | elind 3798 |
. . . . . 6
|
| 8 | simprr 796 |
. . . . . 6
| |
| 9 | restlly.1 |
. . . . . . . 8
| |
| 10 | 9 | anassrs 680 |
. . . . . . 7
|
| 11 | 10 | adantrr 753 |
. . . . . 6
|
| 12 | elequ2 2004 |
. . . . . . . 8
| |
| 13 | oveq2 6658 |
. . . . . . . . 9
| |
| 14 | 13 | eleq1d 2686 |
. . . . . . . 8
|
| 15 | 12, 14 | anbi12d 747 |
. . . . . . 7
|
| 16 | 15 | rspcev 3309 |
. . . . . 6
|
| 17 | 7, 8, 11, 16 | syl12anc 1324 |
. . . . 5
|
| 18 | 17 | ralrimivva 2971 |
. . . 4
|
| 19 | islly 21271 |
. . . 4
| |
| 20 | 2, 18, 19 | sylanbrc 698 |
. . 3
|
| 21 | 20 | ex 450 |
. 2
|
| 22 | 21 | ssrdv 3609 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-lly 21269 |
| This theorem is referenced by: llyidm 21291 nllyidm 21292 toplly 21293 hauslly 21295 lly1stc 21299 |
| Copyright terms: Public domain | W3C validator |