MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Visualization version   Unicode version

Theorem nllyidm 21292
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally  A " is a local property. (Use loclly 21290 to show 𝑛Locally 𝑛Locally  A  = 𝑛Locally  A.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm  |- Locally 𝑛Locally  A  = 𝑛Locally  A

Proof of Theorem nllyidm
Dummy variables  j  u  v  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21275 . . . 4  |-  ( j  e. Locally 𝑛Locally  A  ->  j  e.  Top )
2 llyi 21277 . . . . . . 7  |-  ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) )
3 simprr3 1111 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
jt  u )  e. 𝑛Locally  A )
4 simprl 794 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  e.  j )
5 ssid 3624 . . . . . . . . . . 11  |-  u  C_  u
65a1i 11 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  C_  u )
7 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  j  e. Locally 𝑛Locally  A )
87, 1syl 17 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 20981 . . . . . . . . . . 11  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 693 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 957 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1110 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  y  e.  u )
13 nlly2i 21279 . . . . . . . . 9  |-  ( ( ( jt  u )  e. 𝑛Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1326 . . . . . . . 8  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )
15 restopn2 20981 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
168, 4, 15syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
1716adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
188adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
19 simpr2l 1120 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  e.  j )
20 simpr31 1151 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  z )
21 opnneip 20923 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  z  e.  j  /\  y  e.  z )  ->  z  e.  ( ( nei `  j ) `
 { y } ) )
2218, 19, 20, 21syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  e.  ( ( nei `  j
) `  { y } ) )
23 simpr32 1152 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  C_  v
)
24 simpr1 1067 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P u )
2524elpwid 4170 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u
)
264adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
27 elssuni 4467 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  j  ->  u  C_ 
U. j )
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  U. j
)
2925, 28sstrd 3613 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  U. j
)
30 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  U. j  =  U. j
3130ssnei2 20920 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  Top  /\  z  e.  ( ( nei `  j ) `
 { y } ) )  /\  (
z  C_  v  /\  v  C_  U. j ) )  ->  v  e.  ( ( nei `  j
) `  { y } ) )
3218, 22, 23, 29, 31syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( ( nei `  j
) `  { y } ) )
33 simprr1 1109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  C_  x )
3433adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x
)
3525, 34sstrd 3613 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x
)
36 selpw 4165 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ~P x  <->  v  C_  x )
3735, 36sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
3832, 37elind 3798 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x ) )
39 restabs 20969 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
4018, 25, 26, 39syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( ( jt  u )t  v )  =  ( jt  v ) )
41 simpr33 1153 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( ( jt  u )t  v )  e.  A
)
4240, 41eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( jt  v )  e.  A )
4338, 42jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) )
44433exp2 1285 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
v  e.  ~P u  ->  ( ( z  e.  j  /\  z  C_  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) ) )
4544imp 445 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( ( z  e.  j  /\  z  C_  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) )
4617, 45sylbid 230 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( z  e.  ( jt  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) )
4746rexlimdv 3030 . . . . . . . . . 10  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  (
v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x )  /\  (
jt  v )  e.  A
) ) )
4847expimpd 629 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
( v  e.  ~P u  /\  E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )  -> 
( v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x )  /\  (
jt  v )  e.  A
) ) )
4948reximdv2 3014 . . . . . . . 8  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  ( E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
) )
5014, 49mpd 15 . . . . . . 7  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
512, 50rexlimddv 3035 . . . . . 6  |-  ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
52513expb 1266 . . . . 5  |-  ( ( j  e. Locally 𝑛Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
5352ralrimivva 2971 . . . 4  |-  ( j  e. Locally 𝑛Locally  A  ->  A. x  e.  j 
A. y  e.  x  E. v  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  v )  e.  A )
54 isnlly 21272 . . . 4  |-  ( j  e. 𝑛Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
) )
551, 53, 54sylanbrc 698 . . 3  |-  ( j  e. Locally 𝑛Locally  A  ->  j  e. 𝑛Locally  A )
5655ssriv 3607 . 2  |- Locally 𝑛Locally  A  C_ 𝑛Locally  A
57 nllyrest 21289 . . . . 5  |-  ( ( j  e. 𝑛Locally  A  /\  x  e.  j )  ->  (
jt  x )  e. 𝑛Locally  A )
5857adantl 482 . . . 4  |-  ( ( T.  /\  ( j  e. 𝑛Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. 𝑛Locally  A )
59 nllytop 21276 . . . . . 6  |-  ( j  e. 𝑛Locally  A  ->  j  e.  Top )
6059ssriv 3607 . . . . 5  |- 𝑛Locally  A  C_  Top
6160a1i 11 . . . 4  |-  ( T. 
-> 𝑛Locally  A  C_  Top )
6258, 61restlly 21286 . . 3  |-  ( T. 
-> 𝑛Locally  A  C_ Locally 𝑛Locally  A )
6362trud 1493 . 2  |- 𝑛Locally  A  C_ Locally 𝑛Locally  A
6456, 63eqssi 3619 1  |- Locally 𝑛Locally  A  = 𝑛Locally  A
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   neicnei 20901  Locally clly 21267  𝑛Locally cnlly 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-nei 20902  df-lly 21269  df-nlly 21270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator