| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu2eqd | Structured version Visualization version Unicode version | ||
| Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| reu2eqd.1 |
|
| reu2eqd.2 |
|
| reu2eqd.3 |
|
| reu2eqd.4 |
|
| reu2eqd.5 |
|
| reu2eqd.6 |
|
| reu2eqd.7 |
|
| Ref | Expression |
|---|---|
| reu2eqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu2eqd.6 |
. 2
| |
| 2 | reu2eqd.7 |
. 2
| |
| 3 | reu2eqd.3 |
. . . . 5
| |
| 4 | reu2 3394 |
. . . . 5
| |
| 5 | 3, 4 | sylib 208 |
. . . 4
|
| 6 | 5 | simprd 479 |
. . 3
|
| 7 | reu2eqd.4 |
. . . 4
| |
| 8 | reu2eqd.5 |
. . . 4
| |
| 9 | nfv 1843 |
. . . . . . 7
| |
| 10 | nfs1v 2437 |
. . . . . . 7
| |
| 11 | 9, 10 | nfan 1828 |
. . . . . 6
|
| 12 | nfv 1843 |
. . . . . 6
| |
| 13 | 11, 12 | nfim 1825 |
. . . . 5
|
| 14 | nfv 1843 |
. . . . 5
| |
| 15 | reu2eqd.1 |
. . . . . . 7
| |
| 16 | 15 | anbi1d 741 |
. . . . . 6
|
| 17 | eqeq1 2626 |
. . . . . 6
| |
| 18 | 16, 17 | imbi12d 334 |
. . . . 5
|
| 19 | nfv 1843 |
. . . . . . . 8
| |
| 20 | reu2eqd.2 |
. . . . . . . 8
| |
| 21 | 19, 20 | sbhypf 3253 |
. . . . . . 7
|
| 22 | 21 | anbi2d 740 |
. . . . . 6
|
| 23 | eqeq2 2633 |
. . . . . 6
| |
| 24 | 22, 23 | imbi12d 334 |
. . . . 5
|
| 25 | 13, 14, 18, 24 | rspc2 3320 |
. . . 4
|
| 26 | 7, 8, 25 | syl2anc 693 |
. . 3
|
| 27 | 6, 26 | mpd 15 |
. 2
|
| 28 | 1, 2, 27 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-v 3202 |
| This theorem is referenced by: qtophmeo 21620 footeq 25616 mideulem2 25626 lmieq 25683 |
| Copyright terms: Public domain | W3C validator |