MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem2 Structured version   Visualization version   Unicode version

Theorem mideulem2 25626
Description: Lemma for opphllem 25627, which is itself used for mideu 25630. (Contributed by Thierry Arnoux, 19-Feb-2020.)
Hypotheses
Ref Expression
colperpex.p  |-  P  =  ( Base `  G
)
colperpex.d  |-  .-  =  ( dist `  G )
colperpex.i  |-  I  =  (Itv `  G )
colperpex.l  |-  L  =  (LineG `  G )
colperpex.g  |-  ( ph  ->  G  e. TarskiG )
mideu.s  |-  S  =  (pInvG `  G )
mideu.1  |-  ( ph  ->  A  e.  P )
mideu.2  |-  ( ph  ->  B  e.  P )
mideulem.1  |-  ( ph  ->  A  =/=  B )
mideulem.2  |-  ( ph  ->  Q  e.  P )
mideulem.3  |-  ( ph  ->  O  e.  P )
mideulem.4  |-  ( ph  ->  T  e.  P )
mideulem.5  |-  ( ph  ->  ( A L B ) (⟂G `  G
) ( Q L B ) )
mideulem.6  |-  ( ph  ->  ( A L B ) (⟂G `  G
) ( A L O ) )
mideulem.7  |-  ( ph  ->  T  e.  ( A L B ) )
mideulem.8  |-  ( ph  ->  T  e.  ( Q I O ) )
opphllem.1  |-  ( ph  ->  R  e.  P )
opphllem.2  |-  ( ph  ->  R  e.  ( B I Q ) )
opphllem.3  |-  ( ph  ->  ( A  .-  O
)  =  ( B 
.-  R ) )
mideulem2.1  |-  ( ph  ->  X  e.  P )
mideulem2.2  |-  ( ph  ->  X  e.  ( T I B ) )
mideulem2.3  |-  ( ph  ->  X  e.  ( R I O ) )
mideulem2.4  |-  ( ph  ->  Z  e.  P )
mideulem2.5  |-  ( ph  ->  X  e.  ( ( ( S `  A
) `  O )
I Z ) )
mideulem2.6  |-  ( ph  ->  ( X  .-  Z
)  =  ( X 
.-  R ) )
mideulem2.7  |-  ( ph  ->  M  e.  P )
mideulem2.8  |-  ( ph  ->  R  =  ( ( S `  M ) `
 Z ) )
Assertion
Ref Expression
mideulem2  |-  ( ph  ->  B  =  M )

Proof of Theorem mideulem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . 3  |-  ( y  =  B  ->  ( R L y )  =  ( R L B ) )
21breq1d 4663 . 2  |-  ( y  =  B  ->  (
( R L y ) (⟂G `  G
) ( A L B )  <->  ( R L B ) (⟂G `  G
) ( A L B ) ) )
3 oveq2 6658 . . 3  |-  ( y  =  M  ->  ( R L y )  =  ( R L M ) )
43breq1d 4663 . 2  |-  ( y  =  M  ->  (
( R L y ) (⟂G `  G
) ( A L B )  <->  ( R L M ) (⟂G `  G
) ( A L B ) ) )
5 colperpex.p . . 3  |-  P  =  ( Base `  G
)
6 colperpex.d . . 3  |-  .-  =  ( dist `  G )
7 colperpex.i . . 3  |-  I  =  (Itv `  G )
8 colperpex.l . . 3  |-  L  =  (LineG `  G )
9 colperpex.g . . 3  |-  ( ph  ->  G  e. TarskiG )
10 mideu.1 . . . 4  |-  ( ph  ->  A  e.  P )
11 mideu.2 . . . 4  |-  ( ph  ->  B  e.  P )
12 mideulem.1 . . . 4  |-  ( ph  ->  A  =/=  B )
135, 7, 8, 9, 10, 11, 12tgelrnln 25525 . . 3  |-  ( ph  ->  ( A L B )  e.  ran  L
)
14 opphllem.1 . . 3  |-  ( ph  ->  R  e.  P )
1512adantr 481 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  A  =/=  B )
1615neneqd 2799 . . . . 5  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  -.  A  =  B )
17 mideulem.3 . . . . . . . . 9  |-  ( ph  ->  O  e.  P )
18 opphllem.3 . . . . . . . . 9  |-  ( ph  ->  ( A  .-  O
)  =  ( B 
.-  R ) )
19 mideulem.6 . . . . . . . . . . 11  |-  ( ph  ->  ( A L B ) (⟂G `  G
) ( A L O ) )
208, 9, 19perpln2 25606 . . . . . . . . . 10  |-  ( ph  ->  ( A L O )  e.  ran  L
)
215, 7, 8, 9, 10, 17, 20tglnne 25523 . . . . . . . . 9  |-  ( ph  ->  A  =/=  O )
225, 6, 7, 9, 10, 17, 11, 14, 18, 21tgcgrneq 25378 . . . . . . . 8  |-  ( ph  ->  B  =/=  R )
2322adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  B  =/=  R )
2423necomd 2849 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  R  =/=  B )
2524neneqd 2799 . . . . 5  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  -.  R  =  B )
2616, 25jca 554 . . . 4  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  ( -.  A  =  B  /\  -.  R  =  B
) )
27 mideu.s . . . . . 6  |-  S  =  (pInvG `  G )
289adantr 481 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  G  e. TarskiG )
2910adantr 481 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  A  e.  P )
3011adantr 481 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  B  e.  P )
3114adantr 481 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  R  e.  P )
32 mideulem.2 . . . . . . . . 9  |-  ( ph  ->  Q  e.  P )
33 mideulem.5 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A L B ) (⟂G `  G
) ( Q L B ) )
348, 9, 33perpln2 25606 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q L B )  e.  ran  L
)
355, 7, 8, 9, 32, 11, 34tglnne 25523 . . . . . . . . . . 11  |-  ( ph  ->  Q  =/=  B )
365, 7, 8, 9, 32, 11, 35tglinerflx2 25529 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( Q L B ) )
375, 6, 7, 8, 9, 13, 34, 33perpcom 25608 . . . . . . . . . . 11  |-  ( ph  ->  ( Q L B ) (⟂G `  G
) ( A L B ) )
385, 7, 8, 9, 10, 11, 12tglinecom 25530 . . . . . . . . . . 11  |-  ( ph  ->  ( A L B )  =  ( B L A ) )
3937, 38breqtrd 4679 . . . . . . . . . 10  |-  ( ph  ->  ( Q L B ) (⟂G `  G
) ( B L A ) )
405, 6, 7, 8, 9, 32, 11, 36, 10, 39perprag 25618 . . . . . . . . 9  |-  ( ph  ->  <" Q B A ">  e.  (∟G `  G ) )
41 opphllem.2 . . . . . . . . . 10  |-  ( ph  ->  R  e.  ( B I Q ) )
425, 8, 7, 9, 11, 14, 32, 41btwncolg3 25452 . . . . . . . . 9  |-  ( ph  ->  ( Q  e.  ( B L R )  \/  B  =  R ) )
435, 6, 7, 8, 27, 9, 32, 11, 10, 14, 40, 35, 42ragcol 25594 . . . . . . . 8  |-  ( ph  ->  <" R B A ">  e.  (∟G `  G ) )
445, 6, 7, 8, 27, 9, 14, 11, 10, 43ragcom 25593 . . . . . . 7  |-  ( ph  ->  <" A B R ">  e.  (∟G `  G ) )
4544adantr 481 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  <" A B R ">  e.  (∟G `  G ) )
46 simpr 477 . . . . . . 7  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  R  e.  ( A L B ) )
4746orcd 407 . . . . . 6  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  ( R  e.  ( A L B )  \/  A  =  B ) )
485, 6, 7, 8, 27, 28, 29, 30, 31, 45, 47ragflat3 25601 . . . . 5  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  ( A  =  B  \/  R  =  B ) )
49 oran 517 . . . . 5  |-  ( ( A  =  B  \/  R  =  B )  <->  -.  ( -.  A  =  B  /\  -.  R  =  B ) )
5048, 49sylib 208 . . . 4  |-  ( (
ph  /\  R  e.  ( A L B ) )  ->  -.  ( -.  A  =  B  /\  -.  R  =  B ) )
5126, 50pm2.65da 600 . . 3  |-  ( ph  ->  -.  R  e.  ( A L B ) )
525, 6, 7, 8, 9, 13, 14, 51foot 25614 . 2  |-  ( ph  ->  E! y  e.  ( A L B ) ( R L y ) (⟂G `  G
) ( A L B ) )
535, 7, 8, 9, 10, 11, 12tglinerflx2 25529 . 2  |-  ( ph  ->  B  e.  ( A L B ) )
54 mideulem2.1 . . 3  |-  ( ph  ->  X  e.  P )
5512neneqd 2799 . . . . 5  |-  ( ph  ->  -.  A  =  B )
56 oveq2 6658 . . . . . . 7  |-  ( y  =  A  ->  ( R L y )  =  ( R L A ) )
5756breq1d 4663 . . . . . 6  |-  ( y  =  A  ->  (
( R L y ) (⟂G `  G
) ( A L B )  <->  ( R L A ) (⟂G `  G
) ( A L B ) ) )
5852adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =  A )  ->  E! y  e.  ( A L B ) ( R L y ) (⟂G `  G ) ( A L B ) )
595, 7, 8, 9, 10, 11, 12tglinerflx1 25528 . . . . . . 7  |-  ( ph  ->  A  e.  ( A L B ) )
6059adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =  A )  ->  A  e.  ( A L B ) )
6153adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =  A )  ->  B  e.  ( A L B ) )
629adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  G  e. TarskiG )
6314adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  R  e.  P )
6410adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  A  e.  P )
6551, 55jca 554 . . . . . . . . . . . 12  |-  ( ph  ->  ( -.  R  e.  ( A L B )  /\  -.  A  =  B ) )
66 pm4.56 516 . . . . . . . . . . . 12  |-  ( ( -.  R  e.  ( A L B )  /\  -.  A  =  B )  <->  -.  ( R  e.  ( A L B )  \/  A  =  B ) )
6765, 66sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( R  e.  ( A L B )  \/  A  =  B ) )
685, 7, 8, 9, 14, 10, 11, 67ncolne1 25520 . . . . . . . . . 10  |-  ( ph  ->  R  =/=  A )
6968adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  R  =/=  A )
705, 7, 8, 62, 63, 64, 69tglinecom 25530 . . . . . . . 8  |-  ( (
ph  /\  X  =  A )  ->  ( R L A )  =  ( A L R ) )
7169necomd 2849 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  A  =/=  R )
7217adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  O  e.  P )
7321necomd 2849 . . . . . . . . . 10  |-  ( ph  ->  O  =/=  A )
7473adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  O  =/=  A )
7554adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =  A )  ->  X  e.  P )
76 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  =  A )  ->  X  =  A )
7776, 71eqnetrd 2861 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =  A )  ->  X  =/=  R )
78 mideulem2.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  e.  ( R I O ) )
795, 6, 7, 9, 14, 54, 17, 78tgbtwncom 25383 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  e.  ( O I R ) )
80 mideulem.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  P )
81 mideulem.7 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  ( A L B ) )
82 mideulem2.2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  ( T I B ) )
835, 7, 8, 9, 80, 10, 11, 54, 81, 82coltr3 25543 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  e.  ( A L B ) )
8412necomd 2849 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  B  =/=  A )
8584neneqd 2799 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  B  =  A )
8685adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  -.  B  =  A )
8773neneqd 2799 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  O  =  A )
8887adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  -.  O  =  A )
8986, 88jca 554 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  ( -.  B  =  A  /\  -.  O  =  A
) )
909adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  G  e. TarskiG )
9111adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  B  e.  P )
9210adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  A  e.  P )
9317adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  O  e.  P )
945, 7, 8, 9, 11, 10, 84tglinerflx2 25529 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  A  e.  ( B L A ) )
9538, 19eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( B L A ) (⟂G `  G
) ( A L O ) )
965, 6, 7, 8, 9, 11, 10, 94, 17, 95perprag 25618 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  <" B A O ">  e.  (∟G `  G ) )
9796adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  <" B A O ">  e.  (∟G `  G ) )
98 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  O  e.  ( B L A ) )
9998orcd 407 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  ( O  e.  ( B L A )  \/  B  =  A ) )
1005, 6, 7, 8, 27, 90, 91, 92, 93, 97, 99ragflat3 25601 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  ( B  =  A  \/  O  =  A ) )
101 oran 517 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  =  A  \/  O  =  A )  <->  -.  ( -.  B  =  A  /\  -.  O  =  A ) )
102100, 101sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  O  e.  ( B L A ) )  ->  -.  ( -.  B  =  A  /\  -.  O  =  A ) )
10389, 102pm2.65da 600 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  -.  O  e.  ( B L A ) )
104103, 38neleqtrrd 2723 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -.  O  e.  ( A L B ) )
105 nelne2 2891 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  ( A L B )  /\  -.  O  e.  ( A L B ) )  ->  X  =/=  O
)
10683, 104, 105syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  =/=  O )
1075, 6, 7, 9, 17, 54, 14, 79, 106tgbtwnne 25385 . . . . . . . . . . . . . 14  |-  ( ph  ->  O  =/=  R )
108107adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  =  A )  ->  O  =/=  R )
109108necomd 2849 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  =  A )  ->  R  =/=  O )
11078adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  =  A )  ->  X  e.  ( R I O ) )
1115, 7, 8, 62, 63, 72, 75, 109, 110btwnlng1 25514 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =  A )  ->  X  e.  ( R L O ) )
1125, 7, 8, 62, 75, 63, 72, 77, 111, 109lnrot2 25519 . . . . . . . . . 10  |-  ( (
ph  /\  X  =  A )  ->  O  e.  ( X L R ) )
11376oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  X  =  A )  ->  ( X L R )  =  ( A L R ) )
114112, 113eleqtrd 2703 . . . . . . . . 9  |-  ( (
ph  /\  X  =  A )  ->  O  e.  ( A L R ) )
1155, 7, 8, 62, 64, 63, 71, 72, 74, 114tglineelsb2 25527 . . . . . . . 8  |-  ( (
ph  /\  X  =  A )  ->  ( A L R )  =  ( A L O ) )
11670, 115eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  X  =  A )  ->  ( R L A )  =  ( A L O ) )
1175, 6, 7, 8, 9, 13, 20, 19perpcom 25608 . . . . . . . 8  |-  ( ph  ->  ( A L O ) (⟂G `  G
) ( A L B ) )
118117adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  =  A )  ->  ( A L O ) (⟂G `  G ) ( A L B ) )
119116, 118eqbrtrd 4675 . . . . . 6  |-  ( (
ph  /\  X  =  A )  ->  ( R L A ) (⟂G `  G ) ( A L B ) )
12013adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  =  A )  ->  ( A L B )  e. 
ran  L )
12122necomd 2849 . . . . . . . . 9  |-  ( ph  ->  R  =/=  B )
1225, 7, 8, 9, 14, 11, 121tgelrnln 25525 . . . . . . . 8  |-  ( ph  ->  ( R L B )  e.  ran  L
)
123122adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  =  A )  ->  ( R L B )  e. 
ran  L )
1245, 7, 8, 9, 14, 11, 121tglinerflx2 25529 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( R L B ) )
12553, 124elind 3798 . . . . . . . . 9  |-  ( ph  ->  B  e.  ( ( A L B )  i^i  ( R L B ) ) )
1265, 7, 8, 9, 14, 11, 121tglinerflx1 25528 . . . . . . . . 9  |-  ( ph  ->  R  e.  ( R L B ) )
1275, 6, 7, 8, 9, 13, 122, 125, 59, 126, 12, 121, 44ragperp 25612 . . . . . . . 8  |-  ( ph  ->  ( A L B ) (⟂G `  G
) ( R L B ) )
128127adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  =  A )  ->  ( A L B ) (⟂G `  G ) ( R L B ) )
1295, 6, 7, 8, 62, 120, 123, 128perpcom 25608 . . . . . 6  |-  ( (
ph  /\  X  =  A )  ->  ( R L B ) (⟂G `  G ) ( A L B ) )
13057, 2, 58, 60, 61, 119, 129reu2eqd 3403 . . . . 5  |-  ( (
ph  /\  X  =  A )  ->  A  =  B )
13155, 130mtand 691 . . . 4  |-  ( ph  ->  -.  X  =  A )
132131neqned 2801 . . 3  |-  ( ph  ->  X  =/=  A )
133 mideulem2.7 . . 3  |-  ( ph  ->  M  e.  P )
134132necomd 2849 . . . 4  |-  ( ph  ->  A  =/=  X )
135 eqid 2622 . . . . 5  |-  ( S `
 A )  =  ( S `  A
)
136 eqid 2622 . . . . 5  |-  ( S `
 M )  =  ( S `  M
)
1375, 6, 7, 8, 27, 9, 10, 135, 17mircl 25556 . . . . 5  |-  ( ph  ->  ( ( S `  A ) `  O
)  e.  P )
138 mideulem2.4 . . . . 5  |-  ( ph  ->  Z  e.  P )
139 mideulem2.5 . . . . 5  |-  ( ph  ->  X  e.  ( ( ( S `  A
) `  O )
I Z ) )
14083orcd 407 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  ( A L B )  \/  A  =  B ) )
1415, 8, 7, 9, 10, 11, 54, 140colcom 25453 . . . . . . . 8  |-  ( ph  ->  ( X  e.  ( B L A )  \/  B  =  A ) )
1425, 8, 7, 9, 11, 10, 54, 141colrot1 25454 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A L X )  \/  A  =  X ) )
1435, 6, 7, 8, 27, 9, 11, 10, 17, 54, 96, 84, 142ragcol 25594 . . . . . 6  |-  ( ph  ->  <" X A O ">  e.  (∟G `  G ) )
1445, 6, 7, 8, 27, 9, 54, 10, 17israg 25592 . . . . . 6  |-  ( ph  ->  ( <" X A O ">  e.  (∟G `  G )  <->  ( X  .-  O )  =  ( X  .-  ( ( S `  A ) `
 O ) ) ) )
145143, 144mpbid 222 . . . . 5  |-  ( ph  ->  ( X  .-  O
)  =  ( X 
.-  ( ( S `
 A ) `  O ) ) )
146 mideulem2.6 . . . . . 6  |-  ( ph  ->  ( X  .-  Z
)  =  ( X 
.-  R ) )
147146eqcomd 2628 . . . . 5  |-  ( ph  ->  ( X  .-  R
)  =  ( X 
.-  Z ) )
148 eqidd 2623 . . . . 5  |-  ( ph  ->  ( ( S `  A ) `  O
)  =  ( ( S `  A ) `
 O ) )
149 mideulem2.8 . . . . . . . 8  |-  ( ph  ->  R  =  ( ( S `  M ) `
 Z ) )
150149eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( ( S `  M ) `  Z
)  =  R )
1515, 6, 7, 8, 27, 9, 133, 136, 138, 150mircom 25558 . . . . . 6  |-  ( ph  ->  ( ( S `  M ) `  R
)  =  Z )
152151eqcomd 2628 . . . . 5  |-  ( ph  ->  Z  =  ( ( S `  M ) `
 R ) )
1535, 6, 7, 8, 27, 9, 135, 136, 17, 137, 54, 14, 138, 10, 133, 79, 139, 145, 147, 148, 152krippen 25586 . . . 4  |-  ( ph  ->  X  e.  ( A I M ) )
1545, 7, 8, 9, 10, 54, 133, 134, 153btwnlng3 25516 . . 3  |-  ( ph  ->  M  e.  ( A L X ) )
1555, 7, 8, 9, 10, 11, 12, 54, 132, 83, 133, 154tglineeltr 25526 . 2  |-  ( ph  ->  M  e.  ( A L B ) )
1565, 6, 7, 8, 9, 13, 122, 127perpcom 25608 . 2  |-  ( ph  ->  ( R L B ) (⟂G `  G
) ( A L B ) )
157 nelne2 2891 . . . . . 6  |-  ( ( M  e.  ( A L B )  /\  -.  R  e.  ( A L B ) )  ->  M  =/=  R
)
158155, 51, 157syl2anc 693 . . . . 5  |-  ( ph  ->  M  =/=  R )
159158necomd 2849 . . . 4  |-  ( ph  ->  R  =/=  M )
1605, 7, 8, 9, 14, 133, 159tgelrnln 25525 . . 3  |-  ( ph  ->  ( R L M )  e.  ran  L
)
1615, 7, 8, 9, 14, 133, 159tglinerflx2 25529 . . . . 5  |-  ( ph  ->  M  e.  ( R L M ) )
162155, 161elind 3798 . . . 4  |-  ( ph  ->  M  e.  ( ( A L B )  i^i  ( R L M ) ) )
1635, 7, 8, 9, 14, 133, 159tglinerflx1 25528 . . . 4  |-  ( ph  ->  R  e.  ( R L M ) )
164 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  M  =  X )  ->  M  =  X )
1659adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  M  =  X )  ->  G  e. TarskiG )
166133adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  M  =  X )  ->  M  e.  P )
16710adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  M  =  X )  ->  A  e.  P )
16817adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  M  =  X )  ->  O  e.  P )
169137adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =  X )  ->  (
( S `  A
) `  O )  e.  P )
170145adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  ( X  .-  O )  =  ( X  .-  (
( S `  A
) `  O )
) )
171164oveq1d 6665 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  ( M  .-  O )  =  ( X  .-  O
) )
172164oveq1d 6665 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  ( M  .-  ( ( S `
 A ) `  O ) )  =  ( X  .-  (
( S `  A
) `  O )
) )
173170, 171, 1723eqtr4rd 2667 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =  X )  ->  ( M  .-  ( ( S `
 A ) `  O ) )  =  ( M  .-  O
) )
174138adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  Z  e.  P )
17514adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  R  e.  P )
176149adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  M  =  X )  ->  R  =  ( ( S `
 M ) `  Z ) )
177176oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  M  =  X )  ->  ( M  .-  R )  =  ( M  .-  (
( S `  M
) `  Z )
) )
1785, 6, 7, 8, 27, 165, 166, 136, 174mircgr 25552 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  M  =  X )  ->  ( M  .-  ( ( S `
 M ) `  Z ) )  =  ( M  .-  Z
) )
179177, 178eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  M  =  X )  ->  ( M  .-  R )  =  ( M  .-  Z
) )
1805, 6, 7, 165, 166, 175, 166, 174, 179tgcgrcomlr 25375 . . . . . . . . . . . . 13  |-  ( (
ph  /\  M  =  X )  ->  ( R  .-  M )  =  ( Z  .-  M
) )
18183adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  M  =  X )  ->  X  e.  ( A L B ) )
182164, 181eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( A L B ) )
18351adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  M  =  X )  ->  -.  R  e.  ( A L B ) )
184182, 183, 157syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  M  =  X )  ->  M  =/=  R )
185184necomd 2849 . . . . . . . . . . . . 13  |-  ( (
ph  /\  M  =  X )  ->  R  =/=  M )
1865, 6, 7, 165, 175, 166, 174, 166, 180, 185tgcgrneq 25378 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  Z  =/=  M )
1875, 6, 7, 8, 27, 9, 133, 136, 138mirbtwn 25553 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ( ( ( S `  M
) `  Z )
I Z ) )
188149oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( R I Z )  =  ( ( ( S `  M
) `  Z )
I Z ) )
189187, 188eleqtrrd 2704 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( R I Z ) )
190189adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( R I Z ) )
1915, 6, 7, 165, 175, 166, 174, 190tgbtwncom 25383 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( Z I R ) )
192139adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  M  =  X )  ->  X  e.  ( ( ( S `
 A ) `  O ) I Z ) )
193164, 192eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( ( ( S `
 A ) `  O ) I Z ) )
1945, 6, 7, 165, 169, 166, 174, 193tgbtwncom 25383 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( Z I ( ( S `  A
) `  O )
) )
19578adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  M  =  X )  ->  X  e.  ( R I O ) )
196164, 195eqeltrd 2701 . . . . . . . . . . . 12  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( R I O ) )
1975, 7, 165, 174, 166, 175, 169, 168, 186, 185, 191, 194, 196tgbtwnconn22 25474 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =  X )  ->  M  e.  ( ( ( S `
 A ) `  O ) I O ) )
1985, 6, 7, 8, 27, 165, 166, 136, 168, 169, 173, 197ismir 25554 . . . . . . . . . 10  |-  ( (
ph  /\  M  =  X )  ->  (
( S `  A
) `  O )  =  ( ( S `
 M ) `  O ) )
199198eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  M  =  X )  ->  (
( S `  M
) `  O )  =  ( ( S `
 A ) `  O ) )
2005, 6, 7, 8, 27, 165, 166, 167, 168, 199miduniq1 25581 . . . . . . . 8  |-  ( (
ph  /\  M  =  X )  ->  M  =  A )
201164, 200eqtr3d 2658 . . . . . . 7  |-  ( (
ph  /\  M  =  X )  ->  X  =  A )
202131, 201mtand 691 . . . . . 6  |-  ( ph  ->  -.  M  =  X )
203202neqned 2801 . . . . 5  |-  ( ph  ->  M  =/=  X )
204203necomd 2849 . . . 4  |-  ( ph  ->  X  =/=  M )
205151oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( X  .-  (
( S `  M
) `  R )
)  =  ( X 
.-  Z ) )
206205, 146eqtr2d 2657 . . . . 5  |-  ( ph  ->  ( X  .-  R
)  =  ( X 
.-  ( ( S `
 M ) `  R ) ) )
2075, 6, 7, 8, 27, 9, 54, 133, 14israg 25592 . . . . 5  |-  ( ph  ->  ( <" X M R ">  e.  (∟G `  G )  <->  ( X  .-  R )  =  ( X  .-  ( ( S `  M ) `
 R ) ) ) )
208206, 207mpbird 247 . . . 4  |-  ( ph  ->  <" X M R ">  e.  (∟G `  G ) )
2095, 6, 7, 8, 9, 13, 160, 162, 83, 163, 204, 159, 208ragperp 25612 . . 3  |-  ( ph  ->  ( A L B ) (⟂G `  G
) ( R L M ) )
2105, 6, 7, 8, 9, 13, 160, 209perpcom 25608 . 2  |-  ( ph  ->  ( R L M ) (⟂G `  G
) ( A L B ) )
2112, 4, 52, 53, 155, 156, 210reu2eqd 3403 1  |-  ( ph  ->  B  =  M )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E!wreu 2914   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  opphllem  25627
  Copyright terms: Public domain W3C validator