MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfix2 Structured version   Visualization version   Unicode version

Theorem symgfix2 17836
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.)
Hypothesis
Ref Expression
symgfix2.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
Assertion
Ref Expression
symgfix2  |-  ( L  e.  N  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) )
Distinct variable groups:    k, N    Q, k    k, K, q   
k, L, q    P, q    Q, q
Allowed substitution hints:    P( k)    N( q)

Proof of Theorem symgfix2
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 eldif 3584 . . 3  |-  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  <->  ( Q  e.  P  /\  -.  Q  e.  { q  e.  P  |  ( q `  K )  =  L } ) )
2 ianor 509 . . . . 5  |-  ( -.  ( Q  e.  P  /\  ( Q `  K
)  =  L )  <-> 
( -.  Q  e.  P  \/  -.  ( Q `  K )  =  L ) )
3 fveq1 6190 . . . . . . 7  |-  ( q  =  Q  ->  (
q `  K )  =  ( Q `  K ) )
43eqeq1d 2624 . . . . . 6  |-  ( q  =  Q  ->  (
( q `  K
)  =  L  <->  ( Q `  K )  =  L ) )
54elrab 3363 . . . . 5  |-  ( Q  e.  { q  e.  P  |  ( q `
 K )  =  L }  <->  ( Q  e.  P  /\  ( Q `  K )  =  L ) )
62, 5xchnxbir 323 . . . 4  |-  ( -.  Q  e.  { q  e.  P  |  ( q `  K )  =  L }  <->  ( -.  Q  e.  P  \/  -.  ( Q `  K
)  =  L ) )
76anbi2i 730 . . 3  |-  ( ( Q  e.  P  /\  -.  Q  e.  { q  e.  P  |  ( q `  K )  =  L } )  <-> 
( Q  e.  P  /\  ( -.  Q  e.  P  \/  -.  ( Q `  K )  =  L ) ) )
81, 7bitri 264 . 2  |-  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  <->  ( Q  e.  P  /\  ( -.  Q  e.  P  \/  -.  ( Q `  K )  =  L ) ) )
9 pm2.21 120 . . . . 5  |-  ( -.  Q  e.  P  -> 
( Q  e.  P  ->  ( L  e.  N  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) ) )
10 symgfix2.p . . . . . . 7  |-  P  =  ( Base `  ( SymGrp `
 N ) )
1110symgmov2 17813 . . . . . 6  |-  ( Q  e.  P  ->  A. l  e.  N  E. k  e.  N  ( Q `  k )  =  l )
12 eqeq2 2633 . . . . . . . . . . 11  |-  ( l  =  L  ->  (
( Q `  k
)  =  l  <->  ( Q `  k )  =  L ) )
1312rexbidv 3052 . . . . . . . . . 10  |-  ( l  =  L  ->  ( E. k  e.  N  ( Q `  k )  =  l  <->  E. k  e.  N  ( Q `  k )  =  L ) )
1413rspcva 3307 . . . . . . . . 9  |-  ( ( L  e.  N  /\  A. l  e.  N  E. k  e.  N  ( Q `  k )  =  l )  ->  E. k  e.  N  ( Q `  k )  =  L )
15 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( L  =  ( Q `  k )  ->  (
( Q `  K
)  =  L  <->  ( Q `  K )  =  ( Q `  k ) ) )
1615eqcoms 2630 . . . . . . . . . . . . . . 15  |-  ( ( Q `  k )  =  L  ->  (
( Q `  K
)  =  L  <->  ( Q `  K )  =  ( Q `  k ) ) )
1716notbid 308 . . . . . . . . . . . . . 14  |-  ( ( Q `  k )  =  L  ->  ( -.  ( Q `  K
)  =  L  <->  -.  ( Q `  K )  =  ( Q `  k ) ) )
18 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( K  =  k  ->  ( Q `  K )  =  ( Q `  k ) )
1918eqcoms 2630 . . . . . . . . . . . . . . 15  |-  ( k  =  K  ->  ( Q `  K )  =  ( Q `  k ) )
2019necon3bi 2820 . . . . . . . . . . . . . 14  |-  ( -.  ( Q `  K
)  =  ( Q `
 k )  -> 
k  =/=  K )
2117, 20syl6bi 243 . . . . . . . . . . . . 13  |-  ( ( Q `  k )  =  L  ->  ( -.  ( Q `  K
)  =  L  -> 
k  =/=  K ) )
2221com12 32 . . . . . . . . . . . 12  |-  ( -.  ( Q `  K
)  =  L  -> 
( ( Q `  k )  =  L  ->  k  =/=  K
) )
2322pm4.71rd 667 . . . . . . . . . . 11  |-  ( -.  ( Q `  K
)  =  L  -> 
( ( Q `  k )  =  L  <-> 
( k  =/=  K  /\  ( Q `  k
)  =  L ) ) )
2423rexbidv 3052 . . . . . . . . . 10  |-  ( -.  ( Q `  K
)  =  L  -> 
( E. k  e.  N  ( Q `  k )  =  L  <->  E. k  e.  N  ( k  =/=  K  /\  ( Q `  k
)  =  L ) ) )
25 rexdifsn 4323 . . . . . . . . . 10  |-  ( E. k  e.  ( N 
\  { K }
) ( Q `  k )  =  L  <->  E. k  e.  N  ( k  =/=  K  /\  ( Q `  k
)  =  L ) )
2624, 25syl6bbr 278 . . . . . . . . 9  |-  ( -.  ( Q `  K
)  =  L  -> 
( E. k  e.  N  ( Q `  k )  =  L  <->  E. k  e.  ( N  \  { K }
) ( Q `  k )  =  L ) )
2714, 26syl5ibcom 235 . . . . . . . 8  |-  ( ( L  e.  N  /\  A. l  e.  N  E. k  e.  N  ( Q `  k )  =  l )  -> 
( -.  ( Q `
 K )  =  L  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) )
2827ex 450 . . . . . . 7  |-  ( L  e.  N  ->  ( A. l  e.  N  E. k  e.  N  ( Q `  k )  =  l  ->  ( -.  ( Q `  K
)  =  L  ->  E. k  e.  ( N  \  { K }
) ( Q `  k )  =  L ) ) )
2928com13 88 . . . . . 6  |-  ( -.  ( Q `  K
)  =  L  -> 
( A. l  e.  N  E. k  e.  N  ( Q `  k )  =  l  ->  ( L  e.  N  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) ) )
3011, 29syl5 34 . . . . 5  |-  ( -.  ( Q `  K
)  =  L  -> 
( Q  e.  P  ->  ( L  e.  N  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) ) )
319, 30jaoi 394 . . . 4  |-  ( ( -.  Q  e.  P  \/  -.  ( Q `  K )  =  L )  ->  ( Q  e.  P  ->  ( L  e.  N  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) ) )
3231com13 88 . . 3  |-  ( L  e.  N  ->  ( Q  e.  P  ->  ( ( -.  Q  e.  P  \/  -.  ( Q `  K )  =  L )  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) ) )
3332impd 447 . 2  |-  ( L  e.  N  ->  (
( Q  e.  P  /\  ( -.  Q  e.  P  \/  -.  ( Q `  K )  =  L ) )  ->  E. k  e.  ( N  \  { K }
) ( Q `  k )  =  L ) )
348, 33syl5bi 232 1  |-  ( L  e.  N  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  E. k  e.  ( N  \  { K } ) ( Q `
 k )  =  L ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571   {csn 4177   ` cfv 5888   Basecbs 15857   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator