Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcvalALTV Structured version   Visualization version   Unicode version

Theorem ringcvalALTV 42007
Description: Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcvalALTV.c  |-  C  =  (RingCatALTV `  U )
ringcvalALTV.u  |-  ( ph  ->  U  e.  V )
ringcvalALTV.b  |-  ( ph  ->  B  =  ( U  i^i  Ring ) )
ringcvalALTV.h  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x RingHom 
y ) ) )
ringcvalALTV.o  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v ) RingHom  z ) ,  f  e.  ( ( 1st `  v
) RingHom  ( 2nd `  v
) )  |->  ( g  o.  f ) ) ) )
Assertion
Ref Expression
ringcvalALTV  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    f, g,
v, x, y, z   
v, B, x, y, z    v, U, x, y, z    ph, v, x, y, z
Allowed substitution hints:    ph( f, g)    B( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem ringcvalALTV
Dummy variables  b  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcvalALTV.c . 2  |-  C  =  (RingCatALTV `  U )
2 df-ringcALTV 42006 . . . 4  |- RingCatALTV  =  ( u  e.  _V  |->  [_ ( u  i^i  Ring )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x RingHom  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. } )
32a1i 11 . . 3  |-  ( ph  -> RingCatALTV  =  ( u  e. 
_V  |->  [_ ( u  i^i 
Ring )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x RingHom  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. } ) )
4 vex 3203 . . . . . 6  |-  u  e. 
_V
54inex1 4799 . . . . 5  |-  ( u  i^i  Ring )  e.  _V
65a1i 11 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Ring )  e. 
_V )
7 ineq1 3807 . . . . . 6  |-  ( u  =  U  ->  (
u  i^i  Ring )  =  ( U  i^i  Ring ) )
87adantl 482 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Ring )  =  ( U  i^i  Ring ) )
9 ringcvalALTV.b . . . . . 6  |-  ( ph  ->  B  =  ( U  i^i  Ring ) )
109adantr 481 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  B  =  ( U  i^i  Ring ) )
118, 10eqtr4d 2659 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Ring )  =  B )
12 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  b  =  B )
1312opeq2d 4409 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
14 eqidd 2623 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x RingHom  y )  =  ( x RingHom  y ) )
1512, 12, 14mpt2eq123dv 6717 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x RingHom  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x RingHom  y
) ) )
16 ringcvalALTV.h . . . . . . . 8  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x RingHom 
y ) ) )
1716ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x RingHom  y
) ) )
1815, 17eqtr4d 2659 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x RingHom  y ) )  =  H )
1918opeq2d 4409 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x RingHom  y ) ) >.  =  <. ( Hom  `  ndx ) ,  H >. )
2012sqxpeqd 5141 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
21 eqidd 2623 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) )  =  ( g  e.  ( ( 2nd `  v ) RingHom  z ) ,  f  e.  ( ( 1st `  v
) RingHom  ( 2nd `  v
) )  |->  ( g  o.  f ) ) )
2220, 12, 21mpt2eq123dv 6717 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) )  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) )
23 ringcvalALTV.o . . . . . . . 8  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v ) RingHom  z ) ,  f  e.  ( ( 1st `  v
) RingHom  ( 2nd `  v
) )  |->  ( g  o.  f ) ) ) )
2423ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v
) RingHom  z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) )
2522, 24eqtr4d 2659 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) )  =  .x.  )
2625opeq2d 4409 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >.  =  <. (comp `  ndx ) ,  .x.  >.
)
2713, 19, 26tpeq123d 4283 . . . 4  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x RingHom  y ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
286, 11, 27csbied2 3561 . . 3  |-  ( (
ph  /\  u  =  U )  ->  [_ (
u  i^i  Ring )  / 
b ]_ { <. ( Base `  ndx ) ,  b >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x RingHom  y ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
29 ringcvalALTV.u . . . 4  |-  ( ph  ->  U  e.  V )
30 elex 3212 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
3129, 30syl 17 . . 3  |-  ( ph  ->  U  e.  _V )
32 tpex 6957 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
3332a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
343, 28, 31, 33fvmptd 6288 . 2  |-  ( ph  ->  (RingCatALTV `  U )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
351, 34syl5eq 2668 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    i^i cin 3573   {ctp 4181   <.cop 4183    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953   Ringcrg 18547   RingHom crh 18712  RingCatALTVcringcALTV 42004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-ringcALTV 42006
This theorem is referenced by:  ringcbasALTV  42046  ringchomfvalALTV  42047  ringccofvalALTV  42050
  Copyright terms: Public domain W3C validator