MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota2f Structured version   Visualization version   Unicode version

Theorem riota2f 6632
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2f.1  |-  F/_ x B
riota2f.2  |-  F/ x ps
riota2f.3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
riota2f  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)

Proof of Theorem riota2f
StepHypRef Expression
1 riota2f.1 . . 3  |-  F/_ x B
21nfel1 2779 . 2  |-  F/ x  B  e.  A
31a1i 11 . 2  |-  ( B  e.  A  ->  F/_ x B )
4 riota2f.2 . . 3  |-  F/ x ps
54a1i 11 . 2  |-  ( B  e.  A  ->  F/ x ps )
6 id 22 . 2  |-  ( B  e.  A  ->  B  e.  A )
7 riota2f.3 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
87adantl 482 . 2  |-  ( ( B  e.  A  /\  x  =  B )  ->  ( ph  <->  ps )
)
92, 3, 5, 6, 8riota2df 6631 1  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   E!wreu 2914   iota_crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-v 3202  df-sbc 3436  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-riota 6611
This theorem is referenced by:  riota2  6633  riotaprop  6635  riotass2  6638  riotass  6639  riotaxfrd  6642  cdlemksv2  36135  cdlemkuv2  36155  cdlemk36  36201
  Copyright terms: Public domain W3C validator