MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotass2 Structured version   Visualization version   Unicode version

Theorem riotass2 6638
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
Assertion
Ref Expression
riotass2  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem riotass2
StepHypRef Expression
1 reuss2 3907 . . . 4  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  E! x  e.  A  ph )
2 simplr 792 . . . 4  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  A. x  e.  A  ( ph  ->  ps ) )
3 riotasbc 6626 . . . . 5  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
4 riotacl 6625 . . . . . 6  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
5 rspsbc 3518 . . . . . . 7  |-  ( (
iota_ x  e.  A  ph )  e.  A  -> 
( A. x  e.  A  ( ph  ->  ps )  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ( ph  ->  ps ) ) )
6 sbcimg 3477 . . . . . . 7  |-  ( (
iota_ x  e.  A  ph )  e.  A  -> 
( [. ( iota_ x  e.  A  ph )  /  x ]. ( ph  ->  ps )  <->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ps ) ) )
75, 6sylibd 229 . . . . . 6  |-  ( (
iota_ x  e.  A  ph )  e.  A  -> 
( A. x  e.  A  ( ph  ->  ps )  ->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph 
->  [. ( iota_ x  e.  A  ph )  /  x ]. ps ) ) )
84, 7syl 17 . . . . 5  |-  ( E! x  e.  A  ph  ->  ( A. x  e.  A  ( ph  ->  ps )  ->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph 
->  [. ( iota_ x  e.  A  ph )  /  x ]. ps ) ) )
93, 8mpid 44 . . . 4  |-  ( E! x  e.  A  ph  ->  ( A. x  e.  A  ( ph  ->  ps )  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ps )
)
101, 2, 9sylc 65 . . 3  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ps )
111, 4syl 17 . . . . 5  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  e.  A )
12 ssel 3597 . . . . . 6  |-  ( A 
C_  B  ->  (
( iota_ x  e.  A  ph )  e.  A  -> 
( iota_ x  e.  A  ph )  e.  B ) )
1312ad2antrr 762 . . . . 5  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  (
( iota_ x  e.  A  ph )  e.  A  -> 
( iota_ x  e.  A  ph )  e.  B ) )
1411, 13mpd 15 . . . 4  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  e.  B )
15 simprr 796 . . . 4  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  E! x  e.  B  ps )
16 nfriota1 6618 . . . . 5  |-  F/_ x
( iota_ x  e.  A  ph )
1716nfsbc1 3454 . . . . 5  |-  F/ x [. ( iota_ x  e.  A  ph )  /  x ]. ps
18 sbceq1a 3446 . . . . 5  |-  ( x  =  ( iota_ x  e.  A  ph )  -> 
( ps  <->  [. ( iota_ x  e.  A  ph )  /  x ]. ps )
)
1916, 17, 18riota2f 6632 . . . 4  |-  ( ( ( iota_ x  e.  A  ph )  e.  B  /\  E! x  e.  B  ps )  ->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ps 
<->  ( iota_ x  e.  B  ps )  =  ( iota_ x  e.  A  ph ) ) )
2014, 15, 19syl2anc 693 . . 3  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ps 
<->  ( iota_ x  e.  B  ps )  =  ( iota_ x  e.  A  ph ) ) )
2110, 20mpbid 222 . 2  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  B  ps )  =  ( iota_ x  e.  A  ph )
)
2221eqcomd 2628 1  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   [.wsbc 3435    C_ wss 3574   iota_crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-riota 6611
This theorem is referenced by:  fisupcl  8375  quotlem  24055  adjbdln  28942  rexdiv  29634  cdlemefrs32fva  35688
  Copyright terms: Public domain W3C validator