| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotass2 | Structured version Visualization version Unicode version | ||
| Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
| Ref | Expression |
|---|---|
| riotass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuss2 3907 |
. . . 4
| |
| 2 | simplr 792 |
. . . 4
| |
| 3 | riotasbc 6626 |
. . . . 5
| |
| 4 | riotacl 6625 |
. . . . . 6
| |
| 5 | rspsbc 3518 |
. . . . . . 7
| |
| 6 | sbcimg 3477 |
. . . . . . 7
| |
| 7 | 5, 6 | sylibd 229 |
. . . . . 6
|
| 8 | 4, 7 | syl 17 |
. . . . 5
|
| 9 | 3, 8 | mpid 44 |
. . . 4
|
| 10 | 1, 2, 9 | sylc 65 |
. . 3
|
| 11 | 1, 4 | syl 17 |
. . . . 5
|
| 12 | ssel 3597 |
. . . . . 6
| |
| 13 | 12 | ad2antrr 762 |
. . . . 5
|
| 14 | 11, 13 | mpd 15 |
. . . 4
|
| 15 | simprr 796 |
. . . 4
| |
| 16 | nfriota1 6618 |
. . . . 5
| |
| 17 | 16 | nfsbc1 3454 |
. . . . 5
|
| 18 | sbceq1a 3446 |
. . . . 5
| |
| 19 | 16, 17, 18 | riota2f 6632 |
. . . 4
|
| 20 | 14, 15, 19 | syl2anc 693 |
. . 3
|
| 21 | 10, 20 | mpbid 222 |
. 2
|
| 22 | 21 | eqcomd 2628 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-riota 6611 |
| This theorem is referenced by: fisupcl 8375 quotlem 24055 adjbdln 28942 rexdiv 29634 cdlemefrs32fva 35688 |
| Copyright terms: Public domain | W3C validator |