| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohomval | Structured version Visualization version Unicode version | ||
| Description: The set of ring homomorphisms. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| rnghomval.1 |
|
| rnghomval.2 |
|
| rnghomval.3 |
|
| rnghomval.4 |
|
| rnghomval.5 |
|
| rnghomval.6 |
|
| rnghomval.7 |
|
| rnghomval.8 |
|
| Ref | Expression |
|---|---|
| rngohomval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . . . . 8
| |
| 2 | 1 | fveq2d 6195 |
. . . . . . 7
|
| 3 | rnghomval.5 |
. . . . . . 7
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . 6
|
| 5 | 4 | rneqd 5353 |
. . . . 5
|
| 6 | rnghomval.7 |
. . . . 5
| |
| 7 | 5, 6 | syl6eqr 2674 |
. . . 4
|
| 8 | simpl 473 |
. . . . . . . 8
| |
| 9 | 8 | fveq2d 6195 |
. . . . . . 7
|
| 10 | rnghomval.1 |
. . . . . . 7
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . 6
|
| 12 | 11 | rneqd 5353 |
. . . . 5
|
| 13 | rnghomval.3 |
. . . . 5
| |
| 14 | 12, 13 | syl6eqr 2674 |
. . . 4
|
| 15 | 7, 14 | oveq12d 6668 |
. . 3
|
| 16 | 8 | fveq2d 6195 |
. . . . . . . . 9
|
| 17 | rnghomval.2 |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl6eqr 2674 |
. . . . . . . 8
|
| 19 | 18 | fveq2d 6195 |
. . . . . . 7
|
| 20 | rnghomval.4 |
. . . . . . 7
| |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . 6
|
| 22 | 21 | fveq2d 6195 |
. . . . 5
|
| 23 | 1 | fveq2d 6195 |
. . . . . . . 8
|
| 24 | rnghomval.6 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl6eqr 2674 |
. . . . . . 7
|
| 26 | 25 | fveq2d 6195 |
. . . . . 6
|
| 27 | rnghomval.8 |
. . . . . 6
| |
| 28 | 26, 27 | syl6eqr 2674 |
. . . . 5
|
| 29 | 22, 28 | eqeq12d 2637 |
. . . 4
|
| 30 | 11 | oveqd 6667 |
. . . . . . . . 9
|
| 31 | 30 | fveq2d 6195 |
. . . . . . . 8
|
| 32 | 4 | oveqd 6667 |
. . . . . . . 8
|
| 33 | 31, 32 | eqeq12d 2637 |
. . . . . . 7
|
| 34 | 18 | oveqd 6667 |
. . . . . . . . 9
|
| 35 | 34 | fveq2d 6195 |
. . . . . . . 8
|
| 36 | 25 | oveqd 6667 |
. . . . . . . 8
|
| 37 | 35, 36 | eqeq12d 2637 |
. . . . . . 7
|
| 38 | 33, 37 | anbi12d 747 |
. . . . . 6
|
| 39 | 14, 38 | raleqbidv 3152 |
. . . . 5
|
| 40 | 14, 39 | raleqbidv 3152 |
. . . 4
|
| 41 | 29, 40 | anbi12d 747 |
. . 3
|
| 42 | 15, 41 | rabeqbidv 3195 |
. 2
|
| 43 | df-rngohom 33762 |
. 2
| |
| 44 | ovex 6678 |
. . 3
| |
| 45 | 44 | rabex 4813 |
. 2
|
| 46 | 42, 43, 45 | ovmpt2a 6791 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-rngohom 33762 |
| This theorem is referenced by: isrngohom 33764 |
| Copyright terms: Public domain | W3C validator |