Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngohom Structured version   Visualization version   Unicode version

Theorem isrngohom 33764
Description: The predicate "is a ring homomorphism from  R to  S." (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomval.1  |-  G  =  ( 1st `  R
)
rnghomval.2  |-  H  =  ( 2nd `  R
)
rnghomval.3  |-  X  =  ran  G
rnghomval.4  |-  U  =  (GId `  H )
rnghomval.5  |-  J  =  ( 1st `  S
)
rnghomval.6  |-  K  =  ( 2nd `  S
)
rnghomval.7  |-  Y  =  ran  J
rnghomval.8  |-  V  =  (GId `  K )
Assertion
Ref Expression
isrngohom  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngHom  S )  <->  ( F : X --> Y  /\  ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
Distinct variable groups:    x, y, F    y, Y    x, R, y    x, S, y    x, X, y
Allowed substitution hints:    U( x, y)    G( x, y)    H( x, y)    J( x, y)    K( x, y)    V( x, y)    Y( x)

Proof of Theorem isrngohom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 rnghomval.1 . . . 4  |-  G  =  ( 1st `  R
)
2 rnghomval.2 . . . 4  |-  H  =  ( 2nd `  R
)
3 rnghomval.3 . . . 4  |-  X  =  ran  G
4 rnghomval.4 . . . 4  |-  U  =  (GId `  H )
5 rnghomval.5 . . . 4  |-  J  =  ( 1st `  S
)
6 rnghomval.6 . . . 4  |-  K  =  ( 2nd `  S
)
7 rnghomval.7 . . . 4  |-  Y  =  ran  J
8 rnghomval.8 . . . 4  |-  V  =  (GId `  K )
91, 2, 3, 4, 5, 6, 7, 8rngohomval 33763 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  RngHom  S )  =  { f  e.  ( Y  ^m  X )  |  ( ( f `
 U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( (
f `  ( x G y ) )  =  ( ( f `
 x ) J ( f `  y
) )  /\  (
f `  ( x H y ) )  =  ( ( f `
 x ) K ( f `  y
) ) ) ) } )
109eleq2d 2687 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngHom  S )  <->  F  e.  { f  e.  ( Y  ^m  X )  |  ( ( f `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( f `
 ( x G y ) )  =  ( ( f `  x ) J ( f `  y ) )  /\  ( f `
 ( x H y ) )  =  ( ( f `  x ) K ( f `  y ) ) ) ) } ) )
11 fvex 6201 . . . . . . . 8  |-  ( 1st `  S )  e.  _V
125, 11eqeltri 2697 . . . . . . 7  |-  J  e. 
_V
1312rnex 7100 . . . . . 6  |-  ran  J  e.  _V
147, 13eqeltri 2697 . . . . 5  |-  Y  e. 
_V
15 fvex 6201 . . . . . . . 8  |-  ( 1st `  R )  e.  _V
161, 15eqeltri 2697 . . . . . . 7  |-  G  e. 
_V
1716rnex 7100 . . . . . 6  |-  ran  G  e.  _V
183, 17eqeltri 2697 . . . . 5  |-  X  e. 
_V
1914, 18elmap 7886 . . . 4  |-  ( F  e.  ( Y  ^m  X )  <->  F : X
--> Y )
2019anbi1i 731 . . 3  |-  ( ( F  e.  ( Y  ^m  X )  /\  ( ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `
 ( x G y ) )  =  ( ( F `  x ) J ( F `  y ) )  /\  ( F `
 ( x H y ) )  =  ( ( F `  x ) K ( F `  y ) ) ) ) )  <-> 
( F : X --> Y  /\  ( ( F `
 U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
21 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  U )  =  ( F `  U ) )
2221eqeq1d 2624 . . . . 5  |-  ( f  =  F  ->  (
( f `  U
)  =  V  <->  ( F `  U )  =  V ) )
23 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x G y ) )  =  ( F `  ( x G y ) ) )
24 fveq1 6190 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
25 fveq1 6190 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
2624, 25oveq12d 6668 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  x
) J ( f `
 y ) )  =  ( ( F `
 x ) J ( F `  y
) ) )
2723, 26eqeq12d 2637 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x G y ) )  =  ( ( f `  x ) J ( f `  y ) )  <->  ( F `  ( x G y ) )  =  ( ( F `  x
) J ( F `
 y ) ) ) )
28 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x H y ) )  =  ( F `  ( x H y ) ) )
2924, 25oveq12d 6668 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  x
) K ( f `
 y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )
3028, 29eqeq12d 2637 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x H y ) )  =  ( ( f `  x ) K ( f `  y ) )  <->  ( F `  ( x H y ) )  =  ( ( F `  x
) K ( F `
 y ) ) ) )
3127, 30anbi12d 747 . . . . . 6  |-  ( f  =  F  ->  (
( ( f `  ( x G y ) )  =  ( ( f `  x
) J ( f `
 y ) )  /\  ( f `  ( x H y ) )  =  ( ( f `  x
) K ( f `
 y ) ) )  <->  ( ( F `
 ( x G y ) )  =  ( ( F `  x ) J ( F `  y ) )  /\  ( F `
 ( x H y ) )  =  ( ( F `  x ) K ( F `  y ) ) ) ) )
32312ralbidv 2989 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  X  A. y  e.  X  ( ( f `  ( x G y ) )  =  ( ( f `  x
) J ( f `
 y ) )  /\  ( f `  ( x H y ) )  =  ( ( f `  x
) K ( f `
 y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `  x
) J ( F `
 y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `  x
) K ( F `
 y ) ) ) ) )
3322, 32anbi12d 747 . . . 4  |-  ( f  =  F  ->  (
( ( f `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( f `
 ( x G y ) )  =  ( ( f `  x ) J ( f `  y ) )  /\  ( f `
 ( x H y ) )  =  ( ( f `  x ) K ( f `  y ) ) ) )  <->  ( ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
3433elrab 3363 . . 3  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  ( ( f `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  (
( f `  (
x G y ) )  =  ( ( f `  x ) J ( f `  y ) )  /\  ( f `  (
x H y ) )  =  ( ( f `  x ) K ( f `  y ) ) ) ) }  <->  ( F  e.  ( Y  ^m  X
)  /\  ( ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
35 3anass 1042 . . 3  |-  ( ( F : X --> Y  /\  ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) J ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) )  <-> 
( F : X --> Y  /\  ( ( F `
 U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
3620, 34, 353bitr4i 292 . 2  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  ( ( f `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  (
( f `  (
x G y ) )  =  ( ( f `  x ) J ( f `  y ) )  /\  ( f `  (
x H y ) )  =  ( ( f `  x ) K ( f `  y ) ) ) ) }  <->  ( F : X --> Y  /\  ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) )
3710, 36syl6bb 276 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngHom  S )  <->  ( F : X --> Y  /\  ( F `  U )  =  V  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857  GIdcgi 27344   RingOpscrngo 33693    RngHom crnghom 33759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-rngohom 33762
This theorem is referenced by:  rngohomf  33765  rngohom1  33767  rngohomadd  33768  rngohommul  33769  rngohomco  33773  rngoisocnv  33780
  Copyright terms: Public domain W3C validator