Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoval Structured version   Visualization version   Unicode version

Theorem rngoisoval 33776
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1  |-  G  =  ( 1st `  R
)
rngisoval.2  |-  X  =  ran  G
rngisoval.3  |-  J  =  ( 1st `  S
)
rngisoval.4  |-  Y  =  ran  J
Assertion
Ref Expression
rngoisoval  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  RngIso  S )  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }
)
Distinct variable groups:    R, f    S, f    f, X    f, Y
Allowed substitution hints:    G( f)    J( f)

Proof of Theorem rngoisoval
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6659 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  RngHom  s )  =  ( R  RngHom  S ) )
2 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  ( 1st `  r )  =  ( 1st `  R
) )
3 rngisoval.1 . . . . . . . 8  |-  G  =  ( 1st `  R
)
42, 3syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  ( 1st `  r )  =  G )
54rneqd 5353 . . . . . 6  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  ran  G )
6 rngisoval.2 . . . . . 6  |-  X  =  ran  G
75, 6syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  X )
8 f1oeq2 6128 . . . . 5  |-  ( ran  ( 1st `  r
)  =  X  -> 
( f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
)  <->  f : X -1-1-onto-> ran  ( 1st `  s ) ) )
97, 8syl 17 . . . 4  |-  ( r  =  R  ->  (
f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s )  <->  f : X
-1-1-onto-> ran  ( 1st `  s
) ) )
10 fveq2 6191 . . . . . . . 8  |-  ( s  =  S  ->  ( 1st `  s )  =  ( 1st `  S
) )
11 rngisoval.3 . . . . . . . 8  |-  J  =  ( 1st `  S
)
1210, 11syl6eqr 2674 . . . . . . 7  |-  ( s  =  S  ->  ( 1st `  s )  =  J )
1312rneqd 5353 . . . . . 6  |-  ( s  =  S  ->  ran  ( 1st `  s )  =  ran  J )
14 rngisoval.4 . . . . . 6  |-  Y  =  ran  J
1513, 14syl6eqr 2674 . . . . 5  |-  ( s  =  S  ->  ran  ( 1st `  s )  =  Y )
16 f1oeq3 6129 . . . . 5  |-  ( ran  ( 1st `  s
)  =  Y  -> 
( f : X -1-1-onto-> ran  ( 1st `  s )  <-> 
f : X -1-1-onto-> Y ) )
1715, 16syl 17 . . . 4  |-  ( s  =  S  ->  (
f : X -1-1-onto-> ran  ( 1st `  s )  <->  f : X
-1-1-onto-> Y ) )
189, 17sylan9bb 736 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
)  <->  f : X -1-1-onto-> Y
) )
191, 18rabeqbidv 3195 . 2  |-  ( ( r  =  R  /\  s  =  S )  ->  { f  e.  ( r  RngHom  s )  |  f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s ) }  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y } )
20 df-rngoiso 33775 . 2  |-  RngIso  =  ( r  e.  RingOps ,  s  e.  RingOps  |->  { f  e.  ( r  RngHom  s )  |  f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
) } )
21 ovex 6678 . . 3  |-  ( R 
RngHom  S )  e.  _V
2221rabex 4813 . 2  |-  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }  e.  _V
2319, 20, 22ovmpt2a 6791 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  RngIso  S )  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   ran crn 5115   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   RingOpscrngo 33693    RngHom crnghom 33759    RngIso crngiso 33760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rngoiso 33775
This theorem is referenced by:  isrngoiso  33777
  Copyright terms: Public domain W3C validator