![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoisoval | Structured version Visualization version GIF version |
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
rngoisoval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6659 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆)) | |
2 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
3 | rngisoval.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | 2, 3 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
5 | 4 | rneqd 5353 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
6 | rngisoval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
7 | 5, 6 | syl6eqr 2674 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
8 | f1oeq2 6128 | . . . . 5 ⊢ (ran (1st ‘𝑟) = 𝑋 → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→ran (1st ‘𝑠))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→ran (1st ‘𝑠))) |
10 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = (1st ‘𝑆)) | |
11 | rngisoval.3 | . . . . . . . 8 ⊢ 𝐽 = (1st ‘𝑆) | |
12 | 10, 11 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = 𝐽) |
13 | 12 | rneqd 5353 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = ran 𝐽) |
14 | rngisoval.4 | . . . . . 6 ⊢ 𝑌 = ran 𝐽 | |
15 | 13, 14 | syl6eqr 2674 | . . . . 5 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = 𝑌) |
16 | f1oeq3 6129 | . . . . 5 ⊢ (ran (1st ‘𝑠) = 𝑌 → (𝑓:𝑋–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓:𝑋–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
18 | 9, 17 | sylan9bb 736 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
19 | 1, 18 | rabeqbidv 3195 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
20 | df-rngoiso 33775 | . 2 ⊢ RngIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)}) | |
21 | ovex 6678 | . . 3 ⊢ (𝑅 RngHom 𝑆) ∈ V | |
22 | 21 | rabex 4813 | . 2 ⊢ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ∈ V |
23 | 19, 20, 22 | ovmpt2a 6791 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ran crn 5115 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 RingOpscrngo 33693 RngHom crnghom 33759 RngIso crngiso 33760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-rngoiso 33775 |
This theorem is referenced by: isrngoiso 33777 |
Copyright terms: Public domain | W3C validator |